

2

Tim Harris

10 February 2016

Do not believe
everything you
read in the papers

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for

information purposes only, and may not be incorporated into any contract. It is not a commitment to

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

Oracle reserves the right to alter its development plans and practices at any time, and the development,

release, and timing of any features or functionality described in connection with any Oracle product or

service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and

do not necessarily reflect the views of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Good intentions, bad clip art
D

E
A

D
LIN

E
 *

 D
E

A
D

LIN
E

 *
 D

E
A

D
LIN

E
 *

 D
E

A

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Good intentions, bad clip art
D

E
A

D
LIN

E
 *

 D
E

A
D

LIN
E

 *
 D

E
A

D
LIN

E
 *

 D
E

A

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work
Previous system

New system

B
e

tt
e

r

Algorithm
running
with
18/36/72
threads

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What I want to compare

the performance using our C++ runtime system
from Java (via an optimizing compiler with a
lightweight native function interface)

with

the performance using standard Java fork-join.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What I am actually comparing

Differences

in thread

placement
Differences in

memory

placement

Differences in page sizes

Differences in

GC activity

Changes in low-

level code quality

Changes in work

distribution

granularity

…

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This talk is about

• Making experimental work more methodical

• Some of the “usual suspects” when understanding performance

• Presenting results

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This talk is about

• Making experimental work more methodical

• Some of the “usual suspects” when understanding performance

• Presenting results

• Caveats

– I am mainly talking about work on shared-memory algorithms and data structures

– Some of these observations may apply elsewhere, but I am sure the war stories differ

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This talk is about

• Making experimental work more methodical

• Some of the “usual suspects” when understanding performance

• Presenting results

• Caveats

– I am mainly talking about work on shared-memory algorithms and data structures

– Some of these observations may apply elsewhere, but I am sure the war stories differ

• There are a lot of other elements to consider

– Experimental design

– Statistical analysis of results

Overview

1

2

3

Plan how to present results
before starting work

Understand simple cases first

Script everything, derive
results from measurements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

Building

Running

Generating
results

• From checked-in code in repository
• Reduce dependencies on environment
• Record versions actually used

• Record everything:
• Machine used, system load, …
• Command lines invoked
• UNIX environment

• Take the output of a run (e.g., text logs)
• Clean up
• Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

Building

Running

Generating
results

• From checked-in code in repository
• Reduce dependencies on environment
• Record versions actually used

• Record everything:
• Machine used, system load, …
• Command lines invoked
• UNIX environment

One “run” script.
One results file.
One “process” script.

• Take the output of a run (e.g., text logs)
• Clean up
• Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

• Take the output of a run (e.g., text logs)
• Clean up
• Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

Script everything, record everything

Building

Running

Generating
results

• From checked-in code in repository
• Reduce dependencies on environment
• Record versions actually used

• Record everything:
• Machine, system load, …
• Command lines invoked
• UNIX environment

+ date
Sun Jan 24 11:31:23 PST 2016
+ g++ --version
g++ (GCC) 4.9.1
Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

+ export CLIENTS_PER=10
+ CLIENTS_PER=10
+ export QUEUE=bunch-unreservedq
+ QUEUE=bunch-unreservedq
+ export TIME_MINUTES=120
+ TIME_MINUTES=120
+ FLAGS=
+ cp config-big-scale-both.hpp config.hpp
+ cat config.hpp
/*
* config.hpp
*
* Created on: 27.Jan.2015
* Author: erfanz
*/

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

Building

Running

Generating
results

• From checked-in code in repository
• Reduce dependencies on environment
• Record versions actually used

• Record everything:
• Machine, system load, …
• Command lines invoked
• UNIX environment

+ date
Sun Jan 24 11:31:23 PST 2016
+ g++ --version
g++ (GCC) 4.9.1
Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

+ export CLIENTS_PER=10
+ CLIENTS_PER=10
+ export QUEUE=bunch-unreservedq
+ QUEUE=bunch-unreservedq
+ export TIME_MINUTES=120
+ TIME_MINUTES=120
+ FLAGS=
+ cp config-big-scale-both.hpp config.hpp
+ cat config.hpp
/*
* config.hpp
*
* Created on: 27.Jan.2015
* Author: erfanz
*/

salloc: Job allocation 1955166 has been revoked.
srun: Job step aborted: Waiting up to 2 seconds for job step to finish.
srun: error: bunch003: task 2: Terminated
+ for SERVERS in 1 2 4 8 16 24 32 48
+ export CLIENT_MACHINES=4
+ CLIENT_MACHINES=4
+ MC=9
+ date
Sun Jan 24 11:38:45 PST 2016
+ sinfo
+ grep bunch-unreservedq
bunch-unreservedq up 4:00:00 100 idle bunch[001-100]
+ COMMENT=brown-tx-scale-4-9
+ export SERVERS
+ salloc -pbunch-unreservedq -t120 -N9 -n9 --comment=brown-tx-scale-4-9
salloc: Granted job allocation 1955168
+ make -j
g++ -std=gnu++11 -g -O3 -Wall -Wconversion -Wextra -Wno-ignored-qualifiers
-Wno-write-strings -Isrc/util -Isrc/basic-types -Isrc/executor -Isrc/TSM-SI -Isrc/TSM-SI/client
-Isrc/TSM-SI/server -Isrc/TSM-SI/timestamp-oracle -c src/util/BaseContext.cpp
-o build/util/BaseContext.o

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

Building

Running

Generating
results

• From checked-in code in repository
• Reduce dependencies on environment
• Record versions actually used

• Record everything:
• Machine used, system load, …
• Command lines invoked
• UNIX environment

• Take the output of a run (e.g., text logs)
• Clean up
• Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

“A pragmatic implementation of non-blocking linked lists”, Tim Harris, DISC 2001

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Too much??

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Too much??

Deters experimentation if turnaround
time is long (e.g. >> overnight)

Harder to separate resource re-use
policy from the rest of the expt.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work… what we imagine:

1000000 operations

1000000 operations

1000000 operations

1000000 operations

Measure duration = 2s

Throughput = 4M / 2s = 2M ops / s

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work… what we get:

1000000 operations

1000000 operations

1000000 operations

1000000 operations

?

?

?

?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Constant load

• Fixed number of threads active

– E.g., data structure micro-benchmarks

– Look at how the structure under test behaves under varying loads

• Keep all threads active throughout experiment. Typically:

– Create threads

– Perform warm-up work in each thread

– Barrier

– Actual measurement interval

–Main thread signals request to exit to others

• Investigate and report differences in actual work completed by threads

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Constant work

• Fixed amount of work to perform

– Share it among a set of threads – e.g., OpenMP parallel loop

– Aim to use threads to complete the work more quickly

–Measure from when the work is started until when it is all complete

• Show results for

– Strong scaling: same amount of work as you vary the number of threads

–Weak scaling: increase the work proportional to the threads

• Investigate and report differences in

– Load imbalance (do threads finish early?)

– Actual amount of work completed by threads (do some threads work faster?)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Unfairness: simple test-and-test-and-set lock

• Main thread runs a constant number of iterations, signals others to stop

• 2-socket Haswell, threads pinned sequentially to cores in 1 socket

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

O
p

e
ra

ti
o

n
s

p
e

r
th

re
a

d
n

o
rm

a
li

ze
d

 t
o

 m
a

in

H/W thread number (0..18)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Unfairness: simple test-and-test-and-set lock

• Main thread runs a constant number of iterations, signals others to stop

• 2-socket Haswell, threads pinned sequentially to cores in both sockets
O

p
e

ra
ti

o
n

s
p

e
r

th
re

a
d

n
o

rm
a

li
ze

d
 t

o
 m

a
in

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

45x, not 45%!

H/W thread number (0..36)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

a
li

ze
d

 t
h

ro
u

g
h

p
u

t
o

p
s/

s
a

t
3

6
 t

h
re

a
d

s
(1

 p
e

r
co

re
)

numactl --membind=0,1

Default (first touch?)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

a
li

ze
d

 t
h

ro
u

g
h

p
u

t
o

p
s/

s
a

t
3

6
 t

h
re

a
d

s
(1

 p
e

r
co

re
)

numactl --membind=0,1

Default (first touch?)

numactl --membind=0

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

a
li

ze
d

 t
h

ro
u

g
h

p
u

t
o

p
s/

s
a

t
3

6
 t

h
re

a
d

s
(1

 p
e

r
co

re
)

numactl --membind=0,1

Default (first touch?)

numactl --membind=0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
e

r-
th

re
a

d

th
ro

u
g

h
p

u
t

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

a
li

ze
d

 t
h

ro
u

g
h

p
u

t
o

p
s/

s
a

t
3

6
 t

h
re

a
d

s
(1

 p
e

r
co

re
)

numactl --interleave=0,1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Script everything, record everything

Building

Running

Generating
results

• From checked-in code in repository
• Reduce dependencies on environment
• Record versions actually used

• Record everything:
• Machine used, system load, …
• Command lines invoked
• UNIX environment

• Take the output of a run (e.g., text logs)
• Clean up
• Generate finished clean graphs

(e.g., PDF for papers and EMF for slides)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Generating results

General principle: derive results from
numbers you measure, not from
numbers you configure

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Generating results

General principle: derive results from
numbers you measure, not from
numbers you configure

Configuration setting
written in incorrect file

Environment variable set
incorrectly (“GOMP_PROC_BIND”)

Code that reads the
setting is buggy

Setting is invalid and
ignored at runtime

System overrides the
settings (e.g., thread pinning)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Generating results

“Bind threads 1
per socket”

Have each thread report
where it is running

“Run for 10s” Record time at start & end

“Use 50% reads” Measured #reads/#ops

“Distribute memory
across the machine”

Actual locations and
page sizes used

Overview

1

2

3

Plan how to present results
before starting work

Understand simple cases first

Script everything, derive
results from measurements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Plan how to present results before starting work

• Why?

–Make sure you can illustrate the problem you are solving and you know the questions
you want to see answered

• How bad are things now?

• How much scope exists for improvement?

– Time to practice explaining the format of the results to other people

– Time to notice and resolve difficulties running experiments

– Coding/tweaking/experimenting will expand to fill the time available

• Let them!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

dom
_bc

bc hop_dist
pagerank
t. counting
am
m
p

apsi

art

bt331
bw
aves

equake
fm
a3d

ilbdc

m
d

sw
im

w
upw

ise

dom_bc
bc

hop_dist
pagerank
t. counting

ammp
apsi
art

bt331
bwaves
equake
fma3d
ilbdc
md

swim
wupwise

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz
e
d
 e
x
e
c
u
tio
n
 tim

e

Run “triangle counting” and “equake” together

on the 2-socket machine. Time how long triangle

counting takes compared with running alone on

1 socket.

Running pairs of workloads together on a 2-socket machine

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

dom
_bc

bc hop_dist
pagerank
t. counting
am
m
p

apsi

art

bt331
bw
aves

equake
fm
a3d

ilbdc

m
d

sw
im

w
upw

ise

dom_bc
bc

hop_dist
pagerank
t. counting

ammp
apsi
art

bt331
bwaves
equake
fma3d
ilbdc
md

swim
wupwise

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz
e
d
 e
x
e
c
u
tio
n
 tim

e

Running pairs of workloads together on a 2-socket machine

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

dom
_bc

bc hop_dist
pagerank
t. counting
am
m
p

apsi

art

bt331
bw
aves

equake
fm
a3d

ilbdc

m
d

sw
im

w
upw

ise

dom_bc
bc

hop_dist
pagerank
t. counting

ammp
apsi
art

bt331
bwaves
equake
fma3d
ilbdc
md

swim
wupwise

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz
e
d
 e
x
e
c
u
tio
n
 tim

e

Speedup Slowdown (up to 3.5x)

Running pairs of workloads together on a 2-socket machine

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Why does this format work?

• Easy to explain what a good result is like and what a bad result is like

• A neutral result is “quiet”

– All the squares are white

– No need to understand what the workloads actually do

• Captures trade-offs

– Results here often come in pairs

– Green with red

–We will see both of them together

• “Dashboard” while doing the work

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Another example – scalability microbenchmark
SPARC T5-8, 1024 threads

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz
e
d
 s
p
e
e
d
u
p

Batch size

Different work scheduling
mechanisms, vary the
batch size used for
distribution

Perf relative to 1 thread and no
work distribution overheads

~400x speed-up about max we would
expect given the IPC here

(See USENIX ATC 2015 for
the different techniques.)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Microbenchmark results
SPARC T5-8, 1024 threads

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o
rm

a
liz
e
d
 s
p
e
e
d
u
p

Batch size

Y-intercept shows the
best-cast overhead
at very large batch sizes.

Expect a straight horizontal line for
perfect scaling to smaller batch sizes.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Why does this work?

• Easy to explain what a good result is like and what a bad result is like

• A neutral result is “quiet”

– All the squares are white

– No need to understand the different workloads

• Captures trade-offs

– Results here often come in pairs

– Green with red

–We will see both of them together

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trade-offs

• Parallel stop-the-world garbage collector

• Suppose it takes 5% of execution time on average

• Do you care?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trade-offs

Running… Stop! Running… Stop!

Submit
request

Get
response

All I care about is the
ratio of red to grey

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Trade-offs

Running… Stop! Running… Stop!

Req &
response

Now I do care that
unlucky requests are delayed

Req &
response

Req &
. . . . response

- Fan-outs / nesting
- Real time systems
- Low-latency trading

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Minimum mutator utilization

Time window

M
in

im
u

m
 m

u
ta

to
r

u
ti

li
za

ti
o

n 100%

0%

Whole-run throughput

Max pause
time

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Minimum mutator utilization

Time window

M
in

im
u

m
 m

u
ta

to
r

u
ti

li
za

ti
o

n 100%

0%

Whole-run throughput

Max pause
time

Shorter pauses, worse
throughput

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Minimum mutator utilization

Time window

M
in

im
u

m
 m

u
ta

to
r

u
ti

li
za

ti
o

n 100%

0%

Whole-run throughput

Max pause
time

Strictly
better

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Bandwidth vs latency

Bandwidth achieved

R
e

q
u

e
st

 l
a

te
n

cy
Increasing offered load (e.g.
number of active clients)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Bandwidth vs latency

Bandwidth achieved

R
e

q
u

e
st

 l
a

te
n

cy
Increasing offered load (e.g.
number of active clients)Frequently: both

metrics become worse
as the load increases

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Summary

• Make formats easy to explain, e.g.:

– Ideal behaviour is a horizontal line

– Ideal behaviour is a blank heat map

• Make numbers easy to read off

–What does a y-intercept mean?

–What does a x-intercept mean?

– Is anything hidden where lines are clumped together?

• Show and expect to see trade-offs

Overview

1

2

3

Plan how to present results
before starting work

Understand simple cases first

Script everything, derive
results from measurements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Understand simple cases first

• Why? Almost without exception:

– There are bugs in the test harness

– There are bugs in the data processing scripts (grep, cut-n-paste, …)

– There are unexpected factors influencing the results

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Understand simple cases first

• Why? Almost without exception:

– There are bugs in the test harness

– There are bugs in the data processing scripts (grep, cut-n-paste, …)

– There are unexpected factors influencing the results

• Before paying any attention to actual results, try to identify simple test
cases that should have known behavior

– (Even if you do not care about them, or they are contrived)

– Do they behave as expected?

– Can you completely explain them? (“Memory system effects” is not an answer)

– Add them to regression tests, and watch for them breaking

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Basic checks to make

• Should the workload be 100% user mode?

– Confirm this with “top”

– Check that “strace” is quiet (no system call activity)

• Where are the threads running?

• Where is the memory they access located?

• What do profiling tools show?

– Can you use with optimized builds? If not, check impact of disabling optimization

– If you have long-running use cases, does the profile actually match them?

– Look at 1-thread workloads – as expected?

– Increase thread count and look for trends

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, X5-2

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 10 20 30 40 50 60 70 80

O
p

s/
s

Threads

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, X5-2

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 10 20 30 40 50 60 70 80

O
p

s/
s

Threads

Is this a good set
of results? It’s certainly
not a good graph

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, X5-2

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 10 20 30 40 50 60 70 80

O
p

s/
s

Threads

Most of the data is buried down here

Which of these lines (if either)
would be perfect scaling?

Ugly numbers.
Is this good
performance or
poor?

Is this a good set
of results? It’s certainly
not a good graph

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, X5-2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

Normalize to optimized sequential code (and
report absolute baseline). Self-relative scaling
is almost never a good metric to use.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, X5-2

Synergy: “horizontal is good” formats
are unaffected by switching to/from
log-scale axes

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, X5-2

Disable Turbo Boost,
becomes flatter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, X5-2

Improvements to tuning of GC
and use of memory fences.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, X5-2

Initially horizontal (as expected)
at low thread counts.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, X5-2

What is happening here? The simplest
case that is not yet understood.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128

N
o

rm
a

li
ze

d
 t

h
ro

u
g

h
p

u
t

Threads

(It was a stray process still running on the machine)

Fixed. Without Turbo Boost.

With Turbo Boost.

Overview

1

2

3

Plan how to present results
before starting work

Understand simple cases first

Script everything, derive
results from measurements

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work
Previous system

New system

B
e

tt
e

r

Algorithm
running
with
18/36/72
threads

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work
Previous system

New system

B
e

tt
e

r

Algorithm
running
with
18/36/72
threads

1. Work distribution
chunk size 1024 vs 4096

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work
Previous system

New system

B
e

tt
e

r

Algorithm
running
with
18/36/72
threads

1. Work distribution
chunk size 1024 vs 4096

2. Some additional GC
activity with fork-join

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

An example from my recent work
Previous system

New system

B
e

tt
e

r

Algorithm
running
with
18/36/72
threads

1. Work distribution
chunk size 1024 vs 4096

2. Some additional GC
activity with fork-join

3. False sharing on VM
“-UseMembar” page

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Future work

• Three aspects to this talk:

–Working practices to try to make sure there is time to understand results

– Formats for presenting results to help understand them

– Recurring problems from this particular area of research

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Future work

• Three aspects to this talk:

–Working practices to try to make sure there is time to understand results

– Formats for presenting results to help understand them

– Recurring problems from this particular area of research

• I would like to have more common infrastructure for running experiments

– Help run experiments consistently

– Same allocator, same thread placement, …

– Use raw output logs as part of artefact evaluation processes

– By using it, help convince others that experiments are run well

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Further reading

• Books

– Huff & Geis – “How to Lie with Statistics”

– Jain – “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”

– Tufte – “The Visual Display of Quantitative Information”

• Papers and articles

– Bailey – “Twelve Ways to Fool the Masses”

– Fleming & Wallace – “How not to lie with statistics: the correct way to summarize
benchmark results”

– Heiser – “Systems Benchmarking Crimes”

– Hoefler & Belli – “Scientific Benchmarking of Parallel Computing Systems”

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

