
Tim Harris
23-Jun-18

Five ways not to 
fool yourself



Five ways not to fool yourself

“A pragmatic implementation of non-blocking linked lists”, Tim Harris, DISC 2001



Five ways not to fool yourself

1. Measure as you go



Starting and stopping work

• How much work to do?

Too little: results 
dominated by start-up 
effects.  Normalized 
metrics vary as you 
vary the duration.

Long runsShort runs



Starting and stopping work

• How much work to do?

Too little: results 
dominated by start-up 
effects.  Normalized 
metrics vary as you 
vary the duration.

Long runsShort runs

OK: results not 
sensitive to the exact 
choice of settings.  
Confirm this: double / 
halve duration with no 
change.



Starting and stopping work

• How much work to do?

Too little: results 
dominated by start-up 
effects.  Normalized 
metrics vary as you 
vary the duration.

Long runsShort runs

OK: results not 
sensitive to the exact 
choice of settings.  
Confirm this: double / 
halve duration with no 
change.

Unnecessarily long –
deters experimentation, 
and risks errors from 
mixing up results from 
different runs 



Constant load Constant work

Fixed set of threads active throughout 
the measurement interval.  Measure 

the work they do.

1

3

6

11

4

7 8 9 10

5

2

Fixed amount of work (e.g., loop 
iterations).  Measure the time taken to 
perform it. Vary the number of threads.



Plot what you measure, not what you configure
“Bind threads 1 

per socket”
Have each thread report

where it is running

“Run for 10s” Record time at start & end

“Use 50% reads” Measured #reads/#ops

“Distribute memory 
across the machine”

Actual locations and
page sizes used



Five ways not to fool yourself

1. Measure as you go
2. Include lightweight sanity checks



Be skeptical about the results



Be skeptical about the results

• Is the harness running what you intend it to run?
– Incorrect algorithms are often faster
– Good practice: do not print any output until you have confidence in 

the result



Be skeptical about the results

• Does the data structure pass simple checks?
– Start with N items, insert P, delete M, check that we have N+P-M at 

the end
– Suppose we are building a balanced binary tree – is it actually 

balanced at the end?
– Suppose we have a vector of N items and swap pairs of items – do we 

have N distinct items at the end?



Five ways not to fool yourself

1. Measure as you go
2. Include lightweight sanity checks
3. Understand the simple cases first



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

No
rm

al
ize

d 
th

ro
ug

hp
ut

Threads

Skip-list, 100 % read only, 2*Haswell
Normalize to optimized sequential code (and 
report absolute baseline).  Self-relative scaling 
is almost never a good metric to use.

Why isn’t this a 
horizontal line?



Skip-list, 100 % read only, 2*Haswell

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1 2 4 8 16 32 64 128

No
rm

al
ize

d 
th

ro
ug

hp
ut

Threads

Fixed. Without Turbo Boost.

With Turbo Boost.



Five ways not to fool yourself

1. Measure as you go
2. Include lightweight sanity checks
3. Understand the simple cases first
4. Look beyond timing



Look beyond timing

• Try to link:
– Performance measurements from an experiment 
– Measurements of resource use during the experiment
– Differences between the algorithms being executed



Resource utilization

• Examine the use of significant resources in the machine
– Bandwidth to and from memory
– Bandwidth use on the interconnect
– Instruction execution rate

• Clock frequency and power settings
• Look for evidence of bad behavior 
– High page fault rate (i.e., going to disk)
– High TLB miss rate



Thread placement
• Choice between OS-control threading versus pinning
• Real workloads run with OS-controlled threading
– …but OS-controlled threading can be sensitive to blocking / wake-up 

behavior, thread creation order, prior machine state, ….
• Deliberately explore different pinned placements, and quantify 

impact
– Are differences between algorithms consistent across these runs?

• In experiments compare:
– OS (report version)
– Different pinning choices (how many sockets used, how many cores per 

socket, what order are h/w threads used)?



Memory placement

• How are we distributing memory across sockets?
• How is the load distributed over memory channels?
• How is memory being allocated / deallocated?



Unfairness
• Look across all of the threads: did they complete the same amount 

of work?
• Trade-offs between unfairness and aggregate throughput
– Unfairness may correlate with better LLC behavior
– Threads running nearby synchronize more quickly, and get to complete 

more work
• Whether we care about unfairness in itself depends on the 

workload
– Threads serving different clients: may want even response time
– Threads completing a batch of work: just care about overall completion 

time



Unfairness: simple test-and-test-and-set lock

• 2-socket Haswell, threads pinned sequentially to cores in both 
sockets

Op
er

at
io

ns
 p

er
 th

re
ad

no
rm

al
ize

d 
to

 m
ai

n

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0
45x, not 45%!

H/W thread number (0..36)



Five ways not to fool yourself

1. Measure as you go
2. Include lightweight sanity checks
3. Understand the simple cases first
4. Look beyond timing
5. Move toward production settings



Concluding comments
• We optimize for what we measure, or measure what we optimized
– Why pick specific workloads (read/write mix, key space, … ?)
– Does the choice reflect an important workload?
– Are results sensitive to the choice?

• Be careful about averages
– As with fairness over threads, an average over time hides details
– Even if you do not plot all the results, examine trends over time, variability, 

etc.
• Be careful about trade-offs
– Is a new system strictly better, or exploring a new point in a trade-off?



Further reading

• Books
– Huff & Geis – “How to Lie with Statistics”
– Jain – “The Art of Computer Systems Performance Analysis: Techniques for 

Experimental Design, Measurement, Simulation, and Modeling”
– Tufte – “The Visual Display of Quantitative Information”

• Papers and articles
– Bailey – “Twelve Ways to Fool the Masses”
– Fleming & Wallace – “How not to lie with statistics: the correct way to 

summarize benchmark results”
– Heiser – “Systems Benchmarking Crimes”
– Hoefler & Belli – “Scientific Benchmarking of Parallel Computing Systems”


