
Hybrid Binary Rewriting for Memory Access Instrumentation

Amitabha Roy

University of Cambridge

amitabha.roy@cl.cam.ac.uk

Steven Hand

University of Cambridge

steven.hand@cl.cam.ac.uk

Tim Harris

Microsoft Research, Cambridge

tharris@microsoft.com

Abstract

Memory access instrumentation is fundamental to many applica-
tions such as software transactional memory systems, profiling
tools and race detectors. We examine the problem of efficiently
instrumenting memory accesses in x86 machine code to support
software transactional memory and profiling. We aim to automati-
cally instrument all shared memory accesses in critical sections of
x86 binaries, while achieving overhead close to that obtained when
performing manual instrumentation at the source code level.

The two primary options in building such an instrumentation sys-
tem are static and dynamic binary rewriting: the former instruments
binaries at link time before execution, while the latter binary rewrit-
ing instruments binaries at runtime. Static binary rewriting offers
extremely low overhead but is hampered by the limits of static anal-
ysis. Dynamic binary rewriting is able to use runtime information
but typically incurs higher overhead. This paper proposes an al-
ternative: hybrid binary rewriting. Hybrid binary rewriting is built
around the idea of a persistent instrumentation cache (PIC) that is
associated with a binary and contains instrumented code from it. It
supports two execution modes when using instrumentation: active
and passive modes. In the active execution mode, a dynamic binary
rewriting engine (PIN) is used to intercept execution, and generate
instrumentation into the PIC, which is an on-disk file. This execu-
tion mode can take full advantage of runtime information. Later,
passive execution can be used where instrumented code is executed
out of the PIC. This allows us to attain overheads similar to those
incurred with static binary rewriting.

This instrumentation methodology enables a variety of static and
dynamic techniques to be applied. For example, in passive mode,
execution occurs directly from the original executable save for re-
gions that require instrumentation. This has allowed us to build
a low-overhead transactional memory profiler. We also demon-
strate how we can use the combination of static and dynamic tech-
niques to eliminate instrumentation for accesses to locations that
are thread-private.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages Processors

General Terms Design, Performance, Algorithms

Keywords Binary Rewriting, Transactional Memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’11, March 9–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0501-3/11/03. . . $10.00

1. Introduction

The recent shift towards multicores has led to a large body of re-
search that deals with shared memory multithreaded applications.
The focus areas range across improved safety through race detec-
tion [14], to profiling [22], to improved scalability using software
transactional memory [12]. In each of these cases, researchers have
used runtime methods leveraging existing dynamic binary rewriting
engines for instrumentation. Two of these applications – software
transactional memory and profiling – form the motivation for the
x86 binary instrumentation system in this paper.

Dynamic binary rewriting is attractive for these applications since
it does not require source code availability or modification. Unfor-
tunately, dynamic binary rewriting traditionally incurs large over-
heads. An alternative, that also operates at machine code level is
static binary rewriting. Static binary rewriting does not suffer from
the runtime overheads of dynamic binary rewriting. Unfortunately,
static binary rewriting achieves only limited insight into executed
code paths; for example it is difficult to determine the targets of in-
direct branches in binaries with static techniques alone. This in turn
limits the effectiveness of static analysis in determining instrumen-
tation points or optimisations.

In this paper, we describe an instrumentation infrastructure that
combines some of the best ideas from static and dynamic binary
rewriting into an instrumentation technique we call hybrid binary
rewriting. Hybrid binary rewriting generates instrumentation at
runtime. However, instead of discarding generated instrumentation
at the end of execution, it is placed in an on-disk file called the
persistent instrumentation cache (PIC). This “active” mode of in-
strumented execution discovers and instruments code as it is run,
thereby providing all the benefits of dynamic binary rewriting. In
addition to “active” mode, our instrumentation system also allows
execution in “passive” mode. In this mode execution proceeds out
of the native binary unless an instrumented version is available
in the PIC. If so, it executes the instrumented version. If the PIC
contains all the necessary instrumentation then “passive” mode
approximates the low overhead that is obtained from the static pre-
instrumentation of binaries.

The instrumentation system in this paper automatically instruments
shared memory accesses in critical sections — i.e. we only wish to
instrument code in critical sections delimited by lock acquire and
release calls. For example, consider the fragment of source code in
Figure 1. It shows a portion of code from the SSCA2 benchmark
in the STAMP suite [5]. We are interested in the critical section
delimited by the TM BEGIN() and TM END() calls. There are two
shared memory accesses in that region that have been annotated
using TM SHARED READ and TM SHARED WRITE calls. The STAMP
benchmark already contains instrumentation for shared memory
accesses within transactions (critical sections protected by a single
global lock). Clearly, inserting such instrumentation is cumbersome
and error prone. Our instrumentation infrastructure automatically

void
computeGraph (void* argPtr)
{

...
ULONGINT_T j;

ULONGINT_T maxNumVertices = 0;
ULONGINT_T numEdgesPlaced = SDGdataPtr->numEdgesPlaced;
...

TM_BEGIN();
long tmp_maxNumVertices =

(long)TM_SHARED_READ(global_maxNumVertices);
long new_maxNumVertices =

MAX(tmp_maxNumVertices, maxNumVertices) + 1;
TM_SHARED_WRITE(global_maxNumVertices, new_maxNumVertices);

TM_END();

...

Figure 1. Annotated fragment from the SSCA2 benchmark

places the same instrumentation at very little extra overhead (on
average 26%).

The rest of this paper is organised as follows. In Section 2 we dis-
cuss the relevant merits of the two binary rewriting approaches.
Next, in Section 3 we discuss how hybrid binary rewriting works,
in particular the difference between running in active and passive
instrumentation modes. We then cover the operation of active in-
strumentation mode (§3.1) and the operation of passive instrumen-
tation mode (§3.2). In Section 4 we focus on two applications for
the instrumentation system: a profiler for critical sections (§4.1)
that combines memory access traces with lock contention data to
produce useful transactional memory related profiles for the binary;
and a system for automatically eliding locks in x86 binaries to ex-
ecute critical sections using software transactional memory (§4.2).
Finally, we focus on how hybrid binary rewriting can enable inter-
esting instrumentation features that are normally not possible with
either static or dynamic binary rewriting alone. The first is a tech-
nique to dramatically increase the rate at which the PIC reaches
completion i.e. to ensure it contains instrumented versions of all
basic blocks in all critical sections (Section 5). The second is a tech-
nique to automatically filter out thread-private locations in the in-
strumentation (Section 6). This is critical to approaching the perfor-
mance of manual instrumentation, where the programmer is aware
of – and exploits – the fact that locations that are thread private need
not be instrumented when using software transactional memory.

2. Binary Rewriting Approaches

Research in the area of instrumenting machine code has been driven
both by the need to build profiling tools that operate at the binary
level (such as [16]), as well as for tools that actively modify exe-
cution by eliminating dead code [3] or even automatically applying
software transactional memory [12]. Given x86 machine code con-
tained in a program, there are two prevalent approaches to rewrite
binary code into an instrumented form: one is purely static, while
the other is purely dynamic. We next discuss each of these ap-
proaches, focusing on their strengths and weaknesses with regard
to our intended applications.

2.1 Static Binary Rewriting

Static binary rewriting modifies binaries before execution to pro-
duce an instrumented version. An early example of static binary
rewriting is the binary rewriting tool Atom [8]. Other examples
are Diablo [21] and PLTO [17]. Static binary rewriting operates
by reading an executable file (or object file), disassembling it, and
rewriting instructions as desired (e.g. to insert profiling code).

if(AnalysisOpaqueCondition()) {

pthread_mutex_lock(&lock);
}

pthread_mutex_lock(&possibly_nested_lock);
...
pthread_mutex_unlock(&possibly_nested_lock);

// Should the following be instrumented ?
...

if(AnalysisOpaqueCondition()) {
pthread_mutex_unlock(&lock);

}

Figure 2. Possibly Nested Locking

Static binary rewriting has one major advantage over dynamic bi-
nary rewriting: there is no runtime overhead incurred to insert the
instrumentation, since the process occurs before the binary is exe-
cuted. However, from the perspective of our intended applications
there are two key difficulties with using static binary rewriting.

The first problem arises due to indirect branches. Static binary
rewriting needs to analyse the control flow graph to decide which
basic blocks1 in the binary need to be instrumented. For example, in
the case of software transactional memory, the critical section com-
prises all basic blocks reachable from the basic block containing the
lock call, but without encountering an unlock call. This cannot, in
general, be determined a priori with static binary rewriting2.

The second problem is demarcating critical sections in the presence
of nested locking. Consider the example code fragment shown in
Figure 2. A purely static approach cannot determine whether the
portion of code after the first unlock call should be instrumented
since its inclusion in a critical section depends on a dynamically
evaluated condition. Runtime information is critical to being able
to make such decisions correctly.

2.2 Dynamic Binary Rewriting

Dynamic binary rewriting modifies binaries at execution time to
insert instrumentation. Dynamic binary rewriting has gained pop-
ularity since it enables extremely useful program analysis and op-
timisation tools to be built. A number of dynamic binary rewriting
engines have been built such as PIN [10], FastBT [13], Dynamo [2]
and Valgrind [11]. They have formed the basis for useful program
analysis tools such as Memcheck [18], and for program optimisa-
tion, for example using Dynamo. Since instrumentation is inserted
dynamically, it does not suffer from the limitations of static rewrit-
ing mentioned above. However, dynamic binary rewriting can suf-
fer from high overhead. There are two primary sources of this over-
head.

The first is the cost of inserting instrumentation. Code execution
must be stopped in order to rewrite it with instrumentation inserted.
This happens every time new instrumentation is inserted. This cost
is particularly high for short programs, or for those with little
locality.

Another source of high overhead is maintenance of the code cache.
Since the dynamic binary rewriting engine cannot at any point guar-
antee that no new code requiring instrumentation will be executed,
it executes all code out of a code cache. The code cache contains
all encountered basic blocks, even those which have not been in-
strumented; this ensures that the dynamic binary rewriting engine

1 A single-entry single-exit sequence of machine code
2 Atom used a “grey box” approach of understanding the manner in which
case statements are complied (by a C complier) to work out possible targets
of indirect branches; however such approaches are fragile in the face of
language or compiler changes.

Benchmark Description Basic Blocks Executed (static)

Overall Within CS

Bayes Learn a Bayesian network 5641 763 (13.6%)
Genome Gene Sequencing 4243 220 (5.2%)
Intruder Intrusion Detection 4556 476 (10.4%)
Kmeans Clustering 4902 101 (2.1%)
Labyrinth Routing in a maze 4894 342 (7.0%)
SSCA2 Efficient graph representation 4630 105 (2.3%)
Vacation Scaled down SpecJBB 4866 622 (12.8%)
Yada Delaunay mesh refinement 6403 1006 (15.7%)

Table 1. STAMP: Basic Block Profile from Execution

maintains control of code execution and is able to see all newly
executed code. Unfortunately the code cache imposes significant
overhead even for un-instrumented code. This stems from the cost
of maintaining the finitely sized cache, and hence taking care of
events such as evictions, as well as linkage between basic blocks.

From our perspective, the code cache is a completely unnecessary
source of overhead. There is no need to instrument code outside
critical sections, and thus no need to put it into the code cache,
possibly displacing more useful instrumented blocks. This is illus-
trated in the profile of basic blocks from the STAMP benchmark
suite shown in Table 1. For each benchmark, this shows the number
of (static) blocks in the binary that were actually executed while the
next column shows the number of those that were within a critical
section (CS). It is clear that only a small fraction of basic blocks
need be executed with instrumentation, and thus it is desirable to
avoid any overhead (in terms of both code cache space and execu-
tion time) for the others.

3. Hybrid Binary Instrumentation

The x86 binary instrumentation system in this paper aims to com-
bine the benefits of static and dynamic binary rewriting while side-
stepping their problems. At the heart of this hybrid instrumentation
system lies the Persistent Instrumentation Cache (PIC).

A PIC contains instrumented versions of basic blocks within criti-
cal sections of its originating binary. It is persistent, i.e. held in an
on-disk file. In form it thus resembles instrumentation that would
have been added by a static binary rewriting engine. A complete
PIC contains instrumented versions of every reachable basic block
within every possible critical section of the binary. The complete-
ness of a PIC is clearly undecidable in the presence of indirect
branches in the binary. We return to the problem of tolerating in-
complete PICs later in the paper.

The PIC is generated dynamically, and we depend on execution
to look past indirect branches. We also depend on execution to
properly handle nested critical sections (such as the example in
Figure 2) by dynamically counting held locks. The PIC is thus
generated by operating in a dynamic instrumentation mode.

The process of generation of the PIC is shown in Figure 3. The
“Backend Runtime System” consumes instrumentation and con-
tains callbacks for the instrumentation hooks. The instrumentation
flow starts with a number of iterations of active execution (top half
of figure). In this mode, we depend on a dynamic binary rewriting
engine to intercept all executed code in the binary. Basic blocks in
critical sections are instrumented and placed in the PIC.

Once the PIC obtains sufficient coverage, we can execute in pas-
sive mode (bottom half of the figure). In this mode a low cost
“dispatcher” loads the PIC into memory and intercepts lock calls.
Within a critical section, instrumented versions of basic blocks are

Figure 3. Instrumentation Flow

executed if available. Passive mode provides best-effort instrumen-
tation but cannot itself add new instrumentation to the PIC. If the
PIC is incomplete and execution enters a basic block that has no
instrumented version in the PIC, a special instrumentation hook in-
forms the consumer of the instrumentation of this event in order
that it may take appropriate action. Execution then switches to the
un-instrumented version of the critical section.

We now describe in detail the operation of each of these modes of
instrumentation.

3.1 Active Instrumentation Mode

Active mode uses a dynamic binary rewriting engine to intercept
execution and instrument basic blocks in critical sections. Dynamic
binary rewriting engines are fairly complex to build and maintain.
We thus chose to leverage an existing dynamic binary rewriting
engine for this part of the instrumentation system. We use PIN [10],
a widely used and stable dynamic binary rewriting engine for x86
binaries. Our decision to use PIN was guided by two factors.

First, although the source code for the core modules of PIN are not
publicly available, it provides a high level API through which it can
be controlled and extended. The user provides a “pintool” written in
C++ that uses this API to inspect and manipulate x86 code. The API
can operate at various levels of abstraction: from whole images,
down to functions, basic blocks and individual instructions. PIN
also includes a lower level (and not so widely used) API to directly
decode, manipulate and re-encode x86 instructions (complex due
to their CISC nature) from and to machine code called the X86
Encoder Decoder (XED). We made extensive use of XED to build
the instrumentation system in this paper.

Second, PIN has a large community of users and is actively main-
tained. This is important because the x86 ISA is actively changing

...
strcpy(dst1, src1, size1);

...
// enter critical section
pthread_mutex_lock(&lock);

...
strcpy(dst2, src2, size2);

...
pthread_mutex_unlock(&lock);

Figure 4. The same function in multiple contexts

(e.g. the addition of SSE4 instructions), and it is important that the
binary rewriting engine keep up with these additions to be useful
for our applications now and in the future.

3.1.1 Critical Sections

There are two subtle problems in determining critical section
boundaries and intercepting all executed code within them.

The first is that of accurately delimiting critical sections (a problem
already mentioned in §2.1). We require the backend runtime system
to maintain per-thread counters to determine when critical sections
are begun, and when they end. On a critical section begin, we
require a call to a specially named function in the backend runtime
(cs begin); similarly, on encountering the end of a critical section,
we require a call to another specially named function (cs end).
The instrumentation infrastructure looks for execution of these
functions (which can be empty “no-ops”) in order to learn when
critical sections begin and end.

The second problem is ensuring that any code that is executed
both within and outside critical sections is properly instrumented.
Consider Figure 4. The string copy function is first called outside
critical section context. We thus do not generate an instrumented
version. Later it is called within a critical section context. This time,
however, PIN does not present us with the basic blocks in strcpy
since it has already added them to its code cache (unmodified since
we did not see them in critical section context).

PIN allows basic blocks to be annotated with a version that can be
propagated through branches out of a basic block to their target
basic blocks. The same basic block with a different version is
treated differently and presented individually for instrumentation.
We hence annotate basic blocks within a critical section with a
special tag, ensuring that, for example, the strcpy function in
Figure 4 is presented again for instrumentation on the subsequent
execution because it has a different tag.

3.1.2 Instrumentation

We generate instrumentation for critical section begin/end calls
and for each shared memory access within a critical section. The
instrumentation for critical section begin/end calls are tailored to
provide a variety of information to the backend runtime system.
For our STM application, that replaces locks with transactions in
the binary, the region begin call provides information such as the
actual lock acquired, the type of lock (pthreads mutex, openmp
nested lock, etc.); information about the current top of stack (before
the call to the instrumentation routine); and the size of the function
frame where the lock call is encountered. The last two pieces of
information are used by the STM runtime system to construct a
precise checkpoint (together with a setjmp call) that can be used to
rollback execution in the event that it encounters a conflict (through
a longjmp call followed by a copy to restore the stack frame). The
instrumentation can thus be tailored to suit the particular backend
runtime system being used.

The second type of instrumentation generated is for shared mem-
ory accesses within a region. Figure 5 shows the example of a ba-
sic block in a shared memory region from one of the benchmarks
we used. The numbered instructions on the right correspond to the
numbered instructions on the left. For example, the first instruc-
tion accesses memory. This is converted into an instruction that
first loads the target address into the eax register. The next few in-
struction load the size of the access into the edx register, and set a
flag – stored in ecx – which indicates whether or not this instruc-
tion is a read-modify-write (both a read and a write) instruction.
The size and read-modify-write flag are encoded such that the most
common values (4 bytes, false) map to zero. This means the regis-
ters can be set up with a two byte instruction (exclusive or-ing the
register with itself), keeping the size of instrumentation and hence
instruction cache pressure down. The call to the instrumentation
hook returns the (possibly different) address to use for the memory
access in eax, which is then used in the instrumented version of the
basic block.

The first notable feature of the instrumentation is CPU flag and
register management. Since the call to the instrumentation hooks is
expected to destroy the eax, edx and ecx registers as well as the
flags, these need to be saved and restored as appropriate. This is
accomplished by the un-numbered instructions in the instrumented
version of the basic block. The save area is setup on stack (the
PIC is shared between threads) by the first instruction. We perform
liveness analysis at the level of the basic block to optimise away
unnecessary save restores — for example, the fourth instruction
overwrites the x86 flags and thus the flags are not saved.

The second notable feature of the instrumentation is the treatment
of memory accessed through the stack pointer (register esp). The
stack is usually thread private and (due to the limited number of
registers on the x86) heavily accessed. Assuming accesses to the
stack to be thread private means that they can be performed directly
in our applications. However, stack accesses need to be adjusted to
account for the save area we create on stack. In the example this can
be observed in instruction 5, where the offset is adjusted upward by
16 bytes.

The final notable feature about the instrumentation is the handling
of the call instruction that terminates the basic block. The instru-
mented version pushes the return address before jumping to the tar-
get. This is standard practise for binary rewriting engines and orig-
inates from the need to leave return addresses unmodified on stack.
In the example, the rebalance insert function would see the
original native address rather than the address from the PIC were it
to query the return address of the function. A common occurrence
of this kind of behaviour is in position independent code, where a
call is made to the immediately following instruction, which then
queries the top of stack to discover the current instruction pointer.
This is done as there is no direct way on 32-bit x86 to materialise
the instruction pointer in a general purpose register.

Memory access instrumentation is also complicated by the fact that
the x86 Instruction Set Architecture permits complex instructions.
Some instructions allow accessing more than one location (such as
a push of the contents of a memory location). Another complica-
tion arises from string operations where the length of the access
cannot be determined statically (it usually depends on the contents
of the ecx register). We handle such cases by breaking them down
into simpler RISC style operations that are then instrumented.

3.1.3 PIC Operations

There are four basic operations performed on the PIC in active
mode. These are (i) loading the PIC into memory; (ii) appending

// Note: AT&T format-> operation src, dst

1. subl $0x1,0x8(%eax) # Memory[8 + Reg[eax]] -= 1;

2. mov %esi,0xc(%eax) # Memory[12 + Reg[eax]] = Reg[esi];

3. mov %eax,0x4(%esp) # Memory[4 + Reg[esp]] = Reg[eax];
4. xor %ebx,%ebx # Reg[ebx] = 0;

5. mov %edi,(%esp) # Memory[Reg[esp]] = Reg[edi];

6. call 8048ba0 <rebalance_insert>

lea 0xfffffff0(%esp),%esp
mov %eax,0x0(%esp)

1.1 lea 0x8(%eax),%eax
mov %ecx,0x4(%esp)

mov %edx,0x8(%esp)
1.2 xor %edx,%edx
1.3 xor %ecx,%ecx

1.4 inc %ecx
1.5 call 0xff6a4730 # Instrumentation

1.6 subl $0x1,(%eax)
mov 0x0(%esp),%eax

2.1 lea 0xc(%eax),%eax

2.2 xor %edx,%edx
2.3 xor %ecx,%ecx

2.4 call 0xff6a4730
2.5 mov %esi,(%eax)

mov 0x0(%esp),%eax
3. mov %eax,0x14(%esp)
4. xor %ebx,%ebx

5. mov %edi,0x10(%esp)
mov 0x8(%esp),%edx

mov 0x4(%esp),%ecx
lea 0x10(%esp),%esp

6.1 push $0x8048e12

6.2 jmp 0x123c4ba0

Figure 5. Shared memory instrumentation for a basic block

instrumented basic blocks to the PIC; (iii) executing from the PIC;
and finally (iv) querying the PIC.

We load the PIC into memory by doing a memory map (Unix mmap)
from the disk file containing it. This ensures that the disk file is
up-to-date with any additions to the PIC. Appending basic blocks
to the PIC simply consists of writing out instrumented versions of
basic blocks to the end of the PIC.

Executing from the PIC presents a problem due to the special
handling of self-modifying code implemented by PIN. In order
to detect self-modifying code, PIN looks for pages that are being
executed from while being marked writable. It then marks these
pages as read-only and traps writes to them in order to detect any
self-modifying code. This causes large slowdowns when executing
instrumented code out of PIC pages. To work around this problem,
we map the same PIC page twice, once as executable but read-only
and once as read-write but not executable. Appending to the PIC is
done through the writable mapping while actual execution uses the
executable read-only mapping.

The final operation that needs to be supported by the PIC is queries
to map executable native addresses to instrumented basic block
addresses in the PIC, if present. The core of the logic that handles
queries is a map:

f : native address → PIC offset

Such a map is easy to setup and maintain for a single run but diffi-
cult to persist across runs. The reason is that the native executable
address originating the instrumented basic block in the PIC can
change across runs. For example, the native address might origi-
nate in a shared library that can change its load address on each
active execution. To solve this problem, the map is persisted as:

f : (native address relative to base, image name) → PIC offset

It is loaded and turned into the required form by querying the base
of each loaded image (main binary or shared library). A similar
technique is used by dynamic binary rewriting engines that persist
instrumentation across runs [15].

3.2 Passive Instrumentation Mode

We now discuss instrumented execution in passive mode. In this
mode, we use the Unix LD PRELOAD mechanism to accompany the
x86 binary with the instrumentation system and the backend, both
of which are implemented as shared libraries. The critical feature
of execution in passive mode is simplicity and low overhead. There
is zero overhead to add instrumentation and, as we shortly show,
zero overhead when executing code outside an instrumented critical
section.

3.2.1 Preparation

As Figure 3 shows, the PIC prepared during active instrumentation
can be used in passive mode. An offline tool needs to be run
on the PIC before any passive execution that follows an active
execution. The job of this offline tool is effectively to “stitch”
together basic blocks in the PIC by patching branches across them,
to target instrumented basic blocks in the PIC rather than in the
native binary. As an example, consider the call instruction at the
end of Figure 5. During active execution it targets the native binary
and is intercepted and redirected via PIN. The offline patching
step patches the branch to point to the instrumented version of the
target. Note that on the x86, direct branches are instruction pointer
relative and thus the patching is unaffected by PIC relocation across
different runs. The patching step is fast — for example, it takes
barely a few seconds for a 5MB PIC.

3.2.2 Intercept and Dispatch

The heart of passive execution is the intercept and dispatch logic.
The first step is to intercept all lock calls. This is done through the
unix LD PRELOAD mechanism by the intercept logic, and is specific
to the type and functionality of the locking in use. When a lock call
is intercepted, any instrumentation hooks related to lock acquisition
are invoked, and then control is transferred to the dispatcher.

The dispatcher queries the PIC to determine the instrumented ver-
sion of the basic block pointed to by the return address of the orig-
inal lock call. It then modifies the return address on the stack to

1

3

5
L
a
b
y
ri
n
th

Y
a
d
a

B
a
y
e
s

V
a
c
a
ti
o
n

G
e
n
o
m

e

K
m

e
a
n
s

S
S

C
A

2

In
tr

u
d
e
r

R
u
n
ti
m

e
 B

a
s
e
lin

e
d
 t

o
 N

a
ti
v
e

Benchmark

STAMP Instrumentation Overheads

Active
Passive

Figure 6. Instrumentation Overhead

point to the instrumented version of the basic block (the PIC hav-
ing been mapped into memory). On exit from the dispatcher, con-
trol transfers into the PIC and executes the instrumented version
of the critical section. The unlock call is replaced with a call into
the instrumentation hook, which indicates on return if any locks are
held. If no locks are held, control returns to the native binary. Other-
wise control returns to the dispatcher which decides the appropriate
basic block to branch to in the PIC.

The result of this scheme is that, when executing in passive mode,
there is no overhead for inserting instrumentation (as it has already
been inserted during the active phase). Nor is there any overhead
when executing un-instrumented code outside any critical section,
as in such cases execution proceeds directly from the native binary.

The dispatcher is also used to resolve indirect branches by looking
up the PIC. Finally, if a query into the PIC fails due to the PIC not
being complete, an exception is raised to the backend. The default
behaviour on an unhandled exception is to switch to executing un-
instrumented code out of the native binary.

3.2.3 Passive Instrumentation Overheads

In this section, we evaluate the difference in overhead between run-
ning in active and passive modes. We use a specially constructed
“no-op” backend in this section, that simply acquires and releases
necessary locks at critical section boundaries (substituting the orig-
inal lock and unlock calls) and directly returns the address passed
in for shared memory references. The only overheads left are thus
the instrumentation call overhead, and that due to PIN (in active
mode) or the dispatcher (in passive mode). Other backends illus-
trating various case studies follow later in the paper.

We use the STAMP benchmarks to demonstrate how the dispatcher
lowers overheads. We use a single global lock to implement the
transactions in STAMP and thus the TM BEGIN and TM END calls
(such as in Figure 1) are compiled to pthread lock acquire and re-
lease calls. We use macros to turn the manual instrumentation of
shared memory accesses (such as shown in Figure 1) into direct
memory accesses. We then use the instrumentation system pre-
sented thus far to instrument these automatically in the binary. Our
baseline is the x86 binary running without any instrumentation.

Figure 6 shows the performance overhead with this no-op backend
for the STAMP benchmarks (running with 16 threads). We mea-
sure the execution time running with instrumentation baselined to
(divided by) the execution time of the binary running without in-
strumentation. Using the dispatcher instead of PIN is faster in all

cases, with benefits ranging from 26% for labyrinth to as much as
61% in the case of genome.

A key limitation of the dispatcher is that it depends on critical sec-
tions being delimited by shared library calls (in order to use the
LD PRELOAD mechanism). In future work, we intend to remove
this restriction by providing a means to redirect function execu-
tion within the loaded binary. This can be done, for example, by
placing an appropriate branch instruction at the first few bytes of
the function after the binary is loaded into memory.

4. Case Studies

In the following we describe two case studies (backend runtime
systems) that make use of the PIC through more complex backends
We demonstrate both of them using STAMP, starting with a pre-
built PIC, running in passive mode. Note that we use the same
binaries and the same PIC for both the case studies, since the
backend is decoupled from the instrumentation.

4.1 STM Profiler

The profiler uses ideas from a similar profiler we have built ear-
lier to predict transactional memory performance [16]. That work
used PIN to trace memory accesses in a critical section as well as
to measure lock contention. Unfortunately PIN added significant
overhead, making it extremely difficult to measure the time spent
waiting for a lock accurately. This instrumentation system allows a
simple remedy to that problem by using passive execution mode.

An example output from the profiler for the vacation benchmark
of STAMP is shown in Figure 7. For each critical section (source
line number is optionally obtained from debug information for the
binary), the profiling tool prints the fraction of total execution time
spent waiting for and executing the critical section followed by the
average number of waiters seen for the lock. It then prints prop-
erties of the critical section: number of shared memory reads and
writes instrumented, the number of locations reads from and writ-
ten to and, finally, the dependence density. This last metric [22] is
the probability that, were the critical sections scheduled in parallel,
there would be a data flow dependence seen by a dynamic instance
of this critical section. It essence it estimates the conflict probability
were the binary to be run with transactional memory.

The crucial point about the profiler output is that the first two met-
rics depend on accurate timing information about locks and min-
imum instrumentation overhead. The last five metrics depend on
tracing all memory accesses in a critical section (the log files are
post-processed later) and thus impose significant overhead. In or-
der to satisfy both these goals in a single run of the binary, the dis-
patcher for profiling implements four phases of execution, shown in
the state machine of Figure 8. Lock timing and waiters-related in-
formation is collected in the timing phase. Critical section tracing
is done in the tracing phases. No information is collected during
the silent phases. Tuning the length of the four phases changes the
sampling rate (fraction of critical sections instrumented for either
timing or tracing). The dispatcher switches to the instrumented ver-
sion of the critical section in the PIC only in the tracing phase,
thus eliminating any tracing overhead when it is not needed. This
flexibility in applying instrumentation is essential for building an
efficient and accurate profiler.

Finally, the profiler ignores exceptions raised in passive instrumen-
tation mode, since un-instrumented execution in a critical section
only affects the accuracy of the profiled data and does not affect
correct execution of the binary.

CS cs frac(%) wait frac(%) avg waiters rd ops rd locs wr ops wr locs dep dens
client.c:247 0.120 0.811 6.870 447.585 203.204 20.510 14.076 0.440
client.c:267 0.041 0.882 6.868 126.768 74.950 4.363 4.307 0.016
client.c:196 8.037 82.849 6.871 447.412 127.811 12.094 11.601 0.007

Figure 7. Profiling the vacation benchmark in STAMP

SILENT

TIMING

SILENT2

TRACING

native

native

native

instrumented

Figure 8. Profiler Phases

4.2 Software Lock Elision

The second case study we discuss is software lock elision: the au-
tomatic transformation of a lock-based binary into one which uses
software transactional memory. The instrumentation for shared
memory accesses allows indirection of reads and writes to STM
buffers. We apply the well known two-phase commit protocol
that most STMs use [6] to atomically apply changes to shared
memory at the end of the critical section. In order to judge the
efficiency of our automatic shared memory access instrumenta-
tion, we compared against manually inserted instrumentation at the
source code level. The STAMP benchmarks are already available
with this instrumentation. We kept the backend runtime system
(the STM implementation) the same. Figure 9 shows the overhead
(running time with automatic instrumentation divided by running
time with manual instrumentation) of the automatic instrumenta-
tion over the manual one, when running with 16 threads. The goal
is to achieve overheads equal to that of the manual instrumentation
using a purely automatic technique. Most of the benchmarks are at
a ratio close to 1.0, meaning our automatic instrumentation is as
efficient as the manual one.

However, Yada and Genome however show extremely high over-
heads (17X, 5X), and in the case of Bayes the amount of instru-
mented accesses is so large that it overflows the STM buffers.
When we compared the data provided by the profiler (previous sec-
tion) with statistics obtained from the manual instrumentation, we
realised that the instrumentation infrastructure inserted far more
instrumentation calls than the manual one for these three bench-
marks.

To understand why this is the case, consider Figure 10, which
shows a fragment of code from the genome benchmark. It includes
a transaction, that subsequently makes a call to insert an entry into
a hash table that uses the hash function at the bottom. The hash
function includes no (manual) instrumentation of the string being
hashed. This reflects the knowledge of the programmer that, al-

1

3

5

7

L
a

b
y
ri
n

th

Y
a

d
a

B
a

y
e

s

V
a

c
a

ti
o

n

G
e

n
o

m
e

K
m

e
a

n
s

S
S

C
A

2

In
tr

u
d

e
r

R
u

n
ti
m

e
 B

a
s
e

lin
e

d
 t

o
 M

a
n

u
a

l
In

s
tr

u
m

e
n

ta
ti
o

n
Benchmark

STAMP STM Overheads

Yada(passive)=17.452
Passive

Figure 9. Instrumentation Overhead over Manual

TM_BEGIN(); { // stamp/genome/sequencer.c:290

long ii_stop = MIN(i_stop, (i+CHUNK_STEP1));
for (long ii = i; ii < ii_stop; ii++) {

void* segment = vector_at(segmentsContentsPtr, ii);
TMHASHTABLE_INSERT(uniqueSegmentsPtr, segment,

segment);

} /* ii */
} TM_END();

ulong_t hash_sdbm (char* str) {
ulong_t hash = 0;

ulong_t c;
while ((c = *str++) != ’\0’) {

hash = c + (hash << 6) + (hash << 16) - hash;
}

return hash;
}

Figure 10. A fragment of code from the genome benchmark

though the string is shared between threads, the organisation of the
program is such that past the initialisation point the string is shared
read-only. A program-specific optimisation has thus been made by
the programmer to remove any instrumentation in the hash sdbm
function. Unfortunately our instrumentation infrastructure cannot
incorporate such knowledge and ends up adding a far larger number
of instrumentation calls. In Section 6 we show how a combination
of static and runtime techniques can be used to safely incorporate
these optimisations automatically.

Finally, the STM needs to handle exceptions raised in passive
mode correctly. This is done through the standard STM practise
of irrevocability [23], where only one transaction is allowed to run
at a time, and hence can operate without any instrumentation. Note
that this only occurs for any critical sections not discovered when
generating the PIC. In the next section we describe how we ensure
good coverage of basic blocks by applying an on-demand static
discovery technique.

5. Static Basic Block Discovery

Passive mode should ideally execute with every basic block reach-
able in a critical section instrumented and placed in the PIC. The
instrumentation system presented thus far depends on PIN to dis-
cover basic blocks for us. PIN allows instrumentation of code at the
granularity of a trace: a contiguous sequence of basic blocks termi-
nated by an unconditional branch. Crucially, traces are presented
for instrumentation only when they are about to be executed. This
leaves the process of generating a complete PIC dependent on pro-
gram inputs and, in the case of the multithreaded programs we are
interested in, timing.

Deciding if the PIC is complete is undecidable in the presence
of indirect branches. However, it is entirely decidable given only
direct branches. Hence, we use proactive basic block discovery by
statically traversing the control flow graph at runtime. This allows
us to discover reachable basic blocks even before they are executed.
We do this using a depth-first search of the control flow graph in the
binary using Algorithm 1. The basic block at the root (the starting
block in the trace that needs instrumenting) is added to the basic
block stack, which is then passed to the algorithm. The traversal
is terminated on either finding an indirect branch or a call that
terminates a critical section.

Algorithm 1 Depth-First Search of Control Flow Graph

1: while BasicBlockStack is not empty do
2: bb = BasicBlockStack.pop()
3: Instrument bb and add to persistent instrumentation cache
4: ins = bb.LastInstruction()
5: /* ins must be a branch */
6: if ins ends a critical section (unlock call) then
7: continue
8: else
9: if ins is a direct branch then

10: bb = BasicBlockAt(ins.target())
11: BasicBlockStack.push(bb)
12: end if
13: if ins is a conditional branch then
14: /* has a basic block at fall-through */
15: bb = BasicBlockAt(ins.next())
16: goto line 3
17: end if
18: end if
19: end while

Using static traversal improves the rate at which the PIC ap-
proaches completion but we still depend on dynamic execution
to discover starting points of critical sections, and to look past indi-
rect branches. Another limitation in practise is PIN’s capability to
locate basic block boundaries. An interesting example we encoun-
tered when instrumenting the standard C library was an instruction
sequence that checked the thread count and, if it was zero, jumped
into a locked instruction at a point just past the lock prefix, effec-
tively removing the overhead of the lock when there is only one
thread. PIN does not make the target of the jump available in its
list of instructions until actual execution discovers it. Note that the
implementation of proactive basic block discovery pushes PIN’s
APIs into uses that were likely not envisaged by the developers.

Proactive basic block discovery borrows some of the best features
from static and dynamic binary rewriting techniques. Practically,
we found it extremely effective in quickly building the PIC. For
example, we used this infrastructure extensively on the STAMP
benchmarks.

Benchmark Static + Dynamic Dynamic
1 2 3 1 2 3

Bayes 1435 0 0 723 2 0
Genome 383 0 0 221 0 4
Intruder 629 0 0 452 2 4
Kmeans 178 0 0 91 4 0
Labyrinth 443 0 0 340 2 0
SSCA2 394 0 0 111 0 0
Vacation 853 0 0 464 0 0
Yada 1113 0 0 899 1 0

Table 2. The number of basic blocks added to the PIC for each
successive iteration of instrumented execution. The combination of
dynamic execution with static basic block discovery (lhs) enables
much faster convergence than with just dynamic execution (rhs).

Benchmark Executable(bytes) CS Count PIC size/Binary size
Bayes 181603 18 0.34
Genome 118334 8 0.16
Intruder 153089 6 0.20
Kmeans 52821 6 0.17
Labyrinth 116384 6 0.18
SSCA2 140156 13 0.14
Vacation 143772 6 0.28
Yada 196715 9 0.29

Table 3. Persistent Instrumentation Cache Space Costs

As Table 2 shows, with static walking of the control flow graph
the PIC converges within one iteration. On the other hand, without
static walking of the CFG, the PIC does not converge even after
three iterations. Another advantage of proactive code discovery is
that we were able to run STAMP with reduced inputs sets in order to
build the PIC. Thus, even with the overhead of interception using
PIN, building the PIC for all the benchmarks took only a minute
and 18 seconds. On the other hand, running with the STM backend
took 18 minutes. Proactive basic block discovery proved to be an
invaluable time saving tool for much of our research.

In spite of proactive basic block discovery, the PIC is space efficient
since it usually holds only a fraction of the actual executable,
unlike a dynamic binary rewriting engine that would ultimately
hold all executed code in its code cache. Table 3 shows the original
executable size, the number of critical sections and the size of the
fully generated PIC as a fraction of the executable size. Bayes has
the largest relative size of the PIC at 34%. In reality the relative size
of the PIC is even smaller since the static executable size does not
take into account shared library code that may be called. In the case
of Bayes, for example, the PIC includes an instrumented version of
the glibc quicksort function.

6. Private Data Tracking

Making automatic shared memory access instrumentation practical
requires some way to distinguish data that is thread-private from
that which is not. This is a problem for data on the heap, as there is
no clear way to distinguish these (unlike either global thread private
variables – which are usually accessed through a special segment
base – or auto variables on the stack).

The Genome, Bayes and Yada benchmarks in STAMP represent
three cases where this is problematic, as was seen in Figure 9.
One way to get around this issue is to expose an annotation that
indicates thread-private variables to the instrumentation methodol-
ogy. For example, some compilers that automatically instrument
STAMP [20] choose to make such annotation visible to the com-

Figure 11. State machine for allocation pools

piler as a language extension. This is not possible in our case since
we operate at the binary level where source code information is not
available. Hence we wanted to come up with an automatic tech-
nique that can reduce the impact of these extra barriers. In this sec-
tion we present a private data tracking (PDT) scheme that safely re-
duces the cost of instrumentation for thread-private locations with-
out using any source code information.

6.1 Allocation Pools

Our solution starts with the observation that it is usually possible
to discriminate thread-private heap data from that which is not by
considering their allocation sites. In the STAMP benchmarks, for
example, thread private data is allocated at different physical call
sites in the binary from data that is shared. However, it is not
possible to statically know which allocation site allocates thread-
private data. Instead we start with the assumption that all allocation
sites allocate thread-private data and then dynamically detect when
an allocation site has allocated data that turns out to be shared
between threads.

A complication with this approach is that it is not possible to in-
tercept memory accesses outside critical sections (access to shared
data can happen outside critical sections using other methods of
synchronisation). A key design cornerstone for us was to allow di-
rect execution from the native binary for any code outside a critical
section. Hence we make use of hardware memory protection to de-
tect when memory regions are shared among threads.

Our solution intercepts all memory allocation and free calls in the
binary (using the LD PRELOAD mechanism) and uses a separate per-
thread, per-allocation site allocation pool. The pages for each allo-
cation pool can thus be independently protected using the standard
mprotect call in Linux.

Figure 11 shows the states that each allocation pool can be in and
the possible transitions between them. The states PRIVATE IN CS
and PRIVATE OUT CS correspond to cases where the allocation
pool (and its associated pages) are owned by a single thread (pri-
vate). The state SHARED READ represents read-only access to the
entire allocation pool. Finally the SHARED state represents shared
read-write access to the allocation pool.

 (va)

Metadata Table

State

Mirror

Offset

Page Table

Virtual Address (va)

 (va + mirror offset)

Physical Page

Figure 12. Memory mapping for allocation pools

We use a different privilege protection for pages in each state.
Faulting accesses trap into a fault handler that changes page state to
reflect sharing (transitions in Figure 11). In the read-only state only
read access is permitted to the pages. In the shared state all access
is permitted to the pages.

Setting page permissions for the owned (private) states is tricky. We
want to be able to detect when other threads access the page while
still allowing access by the owner. Unfortunately, the page tables
in Linux are shared among threads and thus one cannot expose
different protections for the same page to different threads. The
solution we use is to separate accesses by the owner within a critical
section from those outside of any critical section.

The PRIVATE OUT CS state represents the case where access is
only allowed outside critical sections. In this state we use the most
permissive page protection settings, allowing all access. This might
seem strange, but only results in us being unable to detect sharing
when in the PRIVATE OUT CS state. On the positive side however,
it means that the owning thread can freely access pages from its
owned allocation pools.

The PRIVATE IN CS state represents the case where access is only
allowed inside critical sections. In this state all access to the page
is withdrawn. Thus any access by a non-owning thread faults re-
sulting in a state transition. This however means that there must
remain some way for the owning thread to access these pages. We
accomplish this by a mirror mapping (Figure 12). Each page in
an allocation pool is mapped twice (from a backing file on an in-
memory filesystem). In addition to the virtual address visible to the
application, we map it at a known mirror offset. The mapping at the
mirror offset is always accessible and is used by the owner for any
accesses within the instrumentation callbacks.

The two private states capture thread-private patterns where alloca-
tions made and initialised outside a transaction are used within
transactions. They also capture patterns where allocations are
made, used, and discarded exclusively within transactions [7].

b4: nop
b5: nop
b6: nop

b7: jmp 0xf1 #patched jump
bc: mov $0x55cf7000,%edx

c2: mov %eax,%ecx
c4: shr $0xc,%ecx
c7: mov (%edx,%ecx,4),%ecx

ca: test %ecx,%ecx
cc: je 0xdc

d2: mov (%ecx),%edx
d4: test %edx,%edx

d6: je 0xf8
dc: push %eax
de: mov $0xb8,%ecx

e4: mov $0x35,%edx
ea: call 0xfe06abb0 #patching routine

ef: pop %eax
f1: xor %edx,%edx
f3: call 0xfe067400 #instrumentation callback

f8: mov (%eax),%edx

Figure 13. Self-Modifying Instrumentation

However if a thread-private allocation is used frequently both
within and outside a transaction, it leads to excessive state changes
with the corresponding mprotect calls becoming a performance
bottleneck. We currently limit the occurrence of such cases by
placing a threshold on the number of times an allocation pool can
transition between the two private states: if this threshold is ex-
ceeded, we permanently place the pool in the shared state. In future
work, we intend to explore solutions where we give each thread its
own private page table, thereby simplifying the state machine and
removing this case.

Finally, changing states for an allocation pool requires ensuring that
no other thread can speculatively use the old state. We accomplish
this through a quiescing mechanism whereby we ensure that no
thread is executing out of the PIC before changing the allocation
pool state.

6.2 Per-Page Metadata

In the shared read-only state, all reads simply use the original
pointer for the access, since the location is shared read-only. For the
PRIVATE IN CS state, all reads and writes use the corresponding
mirror pointer. To maintain the current state of a page, we allocate
a global array whose elements are pointers for each page in the
system: the metadata table in Figure 12. The entry points to a per
allocation pool structure recording the current state for the pool.
The instrumentation callbacks for shared memory access perform
a lookup and a check to determine the correct mode of access and
whether a state change needs to be performed.

Our data structures are designed to add a space overhead of under
2% to each physically accessed page. Virtual address space is also
at a premium on the 32-bit machines we used for our experiments:
with some benchmarks allocating as much as 1.5 GB of space,
doubling the virtual address space required to 3GB for mirror maps
was not feasible. Instead we make the observation that the mirror
map is never required once we transition out of the two private
states. We can therefore unmap the mirror space when we reach
either of the non-private states.

6.3 Optimising Instrumentation

To fully realise the benefits of private data tracking, it is desirable
to eliminate the call from the PIC altogether, at least for reads
to thread-private memory. We do this through a combination of

1

3

5

7

L
a

b
y
ri
n

th

Y
a

d
a

B
a

y
e

s

V
a

c
a

ti
o

n

G
e

n
o

m
e

K
m

e
a

n
s

S
S

C
A

2

In
tr

u
d

e
r

R
u

n
ti
m

e
 B

a
s
e

lin
e

d
 t

o
 M

a
n

u
a

l
In

s
tr

u
m

e
n

ta
ti
o

n

Benchmark

STAMP STM Overheads with Private Data Tracking (PDT)

Yada(passive)=17.452
Passive

Passive + PDT
Passive + PDT + Inlining

Figure 14. STAMP + Private Data Tracking

inlining checks within the PIC and using self-modifying code.
First, we place a jump to the next instruction that begins the PDT
checks. If the PDT checks succeed, we jump over the call to the
instrumentation routine. On the other hand, if the PDT check fails,
we call back to special patching function that patches the initial
jump to the next instruction. This will directly branch to the call to
the instrumentation routine, removing the inlined PDT checks.

A example of this “self-modifying instrumentation” is shown in
Figure 13. The jmp is placed (via padding through nops) such that
the branch offset is aligned to a 4 byte boundary (to avoid x86
self modifying code related quirks). The jump (in this disassembled
fragment from the PIC) has been patched to jump to the callback
(at 0xf3) meaning the inlined PDT checks right afterwards must
have failed during execution. If the PDT checks were to succeed,
the conditional jump at 0xd6 would have moved directly to using
the original pointer at 0xf8.

This form of self modifying instrumentation works on the assump-
tion that instructions that access thread-private locations can be
statically partitioned from those that do not, and hence a single
run is usually sufficient to set up the PIC appropriately to elimi-
nate callbacks for accesses to thread-private locations. Note that if
this assumption does not hold it simply means that all accesses are
modified to call into the backend runtime system, which can then
dynamically filter out thread-private accesses.

In Figure 14 we demonstrate the effects of private data tracking. It
adds little overhead to most benchmarks but in the case of Genome
and Yada it significantly reduces the overheads of automatic in-
strumentation. In the case of Bayes it brings the amount of shared
memory access within reach of STM buffering. The average over-
head for automatic instrumentation over the manual one is 26%
with private data tracking and inlining enabled.

6.4 Special Case: OpenMP Thread-private Data

A special case for the PDT infrastructure is when one can statically
identify allocations sites that allocate thread private data. In this
case, we can relinquish memory protection while placing such data
in the PRIVATE IN CS mode. Mirror maps are no longer necessary
and accesses can be made directly.

An example of this is OpenMP thread private data. The OpenMP
specification prohibits thread-private data from being shared be-
tween threads. Furthermore, compilers often use dynamic data al-

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8

F
ra

m
e
 C

a
lc

u
la

ti
o
n
 T

im
e

Threads

Quake Game Server Performance

Passive
Passive + PDT + inlining

Figure 15. Quake

location for OpenMP thread-private data — for example, the In-
tel compilers use a specific call (kmpc threadprivate cached)
in order to allocate any thread-private data. By hooking this call
we can place all such allocated thread-private data in a specially
marked pool that does not require instrumentation.

We used this kind of filtering in conjunction with our instrumenta-
tion infrastructure on a multithreaded version of the Quake game
server [9]. It uses OpenMP for multithreading and coarse grained
OpenMP locks for synchronisation. We compiled the code using
the Intel 3.0 C compiler. Figure 15 shows the benefits of filtering
such accesses when applying software transactional memory to an
executing game server. We report on the frame calculation time,
which represents the parallel portion of the benchmark. Private data
tracking significantly lowers the overhead of shared memory instru-
mentation for Quake.

7. Related Work

There has been significant work on instrumenting execution using
dynamic binary rewriting engines in general [3, 10, 11, 19], as well
as some which applies dynamic binary rewriting to critical sections
in particular [12]. A key distinguishing characteristic of our work
from these solutions is that we execute directly out of the native
binary outside critical sections, thus paying no overhead when there
is no instrumentation. We obtain these benefits by exploiting our
specific use-case: instrumentation is only necessary inside critical
sections. Our instrumentation methodology also bears resemblance
to static instrumentation tools [8] since we operate out of a static
persistent instrumentation cache. However we sidestep the problem
of static instrumentation tools in looking past indirect branches and
locating regions to instrument by depending on dynamic execution.
We thus implement a hybrid instrumentation scheme.

Bruening et al. [4] implemented a scheme to share and persist code
caches across processes, reducing code cache space overheads for
common code such as shared libraries. Reddi et al. [15] imple-
mented a scheme to persist the code cache of PIN across multiple
runs. This allowed lowering the overhead of using dynamic binary
rewriting, particularly for short programs since there was no over-
head to re-generate instrumentation. However neither of them con-
sider the possibility of eliminating the dynamic binary rewriting
engine altogether as we do for passive instrumentation mode.

Another key aspect of our work is elimination of instrumentation
for thread-private locations. We use multiple memory maps to al-
low access by the owning the thread while preventing accesses by

other threads; a similar idea has been explored in work on provid-
ing STM with strong atomicity [1]. However, that work required the
capability to generate instrumentation for accesses outside transac-
tions at runtime. They also placed the mirror map at a constant
offset from the actual page, thus assuming a limit to the size of the
heap. We add a level or indirection and in return obtain the capabil-
ity to dynamically size the heap and unmap mirror mappings that
are not needed, thus conserving virtual memory.

8. Conclusion

We have presented a system for instrumenting shared memory ac-
cesses that uses a combination of static and dynamic instrumenta-
tion, persistence and a custom dispatcher to provide low overhead
pay-to-use instrumentation. It has proven particularly efficient for
our applications and we believe that it can be extended to more
general purpose instrumentation such as instrumenting functions
or entire libraries. The low overhead of using a static persistent
instrumentation cache would make binary rewriting for program
optimisation far more feasible. A persistent instrumentation cache
can also be pre-generated and distributed with binaries for useful
applications such as on-demand profiling and tracing. We intend to
make our infrastructure available to other researchers for use and
possible extensions.

We also believe that the techniques in this work can be used to
improve existing binary rewriting engines. PIN for example, al-
ready provides a mechanism to dynamically attach to and detach
from running binaries. A more fine-grained version of this capabil-
ity where it attaches past a marker function (like a lock acquire) and
detaches past another marker function (like a lock release) would
bring much of the pay-to-use instrumentation benefits that we have
aimed for in this work to PIN.

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with
strong atomicity using off-the-shelf memory protection hardware. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 185–196, 2009.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dy-
namic optimization system. In Proceedings of the ACM SIGPLAN

2000 conference on Programming language design and implementa-

tion, pages 1–12, 2000.

[3] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and im-
plementation of a dynamic optimization framework for windows. In
4th ACM Workshop on Feedback-Directed and Dynamic Optimization,
2000.

[4] D. Bruening and V. Kiriansky. Process-shared and persistent
code caches. In VEE ’08: Proceedings of the fourth ACM SIG-

PLAN/SIGOPS international conference on Virtual execution environ-
ments, pages 61–70, 2008.

[5] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Proceed-

ings of the IEEE International Symposium on Workload Characteriza-
tion, pages 35–46, 2008.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Pro-

ceedings of the 20th International Symposium on Distributed Comput-
ing, pages 194–208, 2006.

[7] A. Dragojevic, Y. Ni, and A.-R. Adl-Tabatabai. Optimizing transac-
tions for captured memory. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures, pages 214–
222, 2009.

[8] A. Eustace and A. Srivastava. Atom: a flexible interface for building
high performance program analysis tools. In Proceedings of the

USENIX 1995 Technical Conference Proceedings, pages 303–314,
1995.

[9] V. Gajinov, F. Zyulkyarov, O. S. Unsal, A. Cristal, E. Ayguade, T. Har-
ris, and M. Valero. QuakeTM: parallelizing a complex sequential ap-
plication using transactional memory. In Proceedings of the 23rd in-

ternational conference on Supercomputing, pages 126–135, 2009.

[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language de-

sign and implementation, pages 190–200, 2005.

[11] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language design and imple-

mentation, pages 89–100, 2007.

[12] M. Olszewski, J. Cutler, and J. G. Steffan. Judostm: A dynamic binary-
rewriting approach to software transactional memory. In Proceedings

of the 16th International Conference on Parallel Architecture and

Compilation Techniques, pages 365–375, 2007.

[13] M. Payer and T. R. Gross. Generating low-overhead dynamic binary
translators. In Proceedings of the 3rd Annual Haifa Experimental

Systems Conference, pages 22:1–22:14, 2010.

[14] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal,
and K. Pattabiraman. Detecting and tolerating asymmetric races. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 173–184, 2009.

[15] V. J. Reddi, D. Connors, R. Cohn, and M. D. Smith. Persistent code
caching: Exploiting code reuse across executions and applications. In
Proceedings of the International Symposium on Code Generation and

Optimization, pages 74–88, 2007.

[16] A. Roy, S. Hand, and T. Harris. Exploring the limits of disjoint access
parallelism. In Proceedings of the First USENIX conference on Hot
topics in parallelism, 2009.

[17] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. PLTO: A link-
time optimizer for the Intel IA-32 architecture. In Proceedings of the
2001 Workshop on Binary Translation, 2001.

[18] J. Seward and N. Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In Proceedings of the annual conference on
USENIX Annual Technical Conference, 2005.

[19] S. Sridhar, J. S. Shapiro, and P. P. Bungale. HDTrans: a low-
overhead dynamic translator. SIGARCH Computer Architecture News,
35(1):135–140, 2007.

[20] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis. Adaptive locks:
Combining transactions and locks for efficient concurrency. In Pro-

ceedings of the 2009 18th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 3–14, 2009.

[21] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere.
DIABLO: a reliable, retargetable and extensible link-time rewriting
framework. In Proceedings of the 2005 IEEE International Sympo-

sium On Signal Processing And Information Technology, pages 7–12,
2005.

[22] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic
concurrency using quantitative dependence analysis. In Proceedings

of the 13th ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 185–196, 2008.

[23] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions
and their applications. In Proceedings of the twentieth annual sympo-

sium on Parallelism in algorithms and architectures, pages 285–296,
2008.

