
Controlling run�time compilation

Timothy Harris� APM Ltd�� tim�harris�citrix�com

Poseidon House� Castle Park� Cambridge� CB� �RD�

Tel� ��� �		�
�
���� Fax� ��� �		� �
�����

November ��� ���

Keywords� Java implementation� just�in�time compilation�

run�time compilation� controllable compilation� real�time systems�

Abstract

This paper describes a technique for integrating run�time compilation which is e�ectively pause free

and for which the worst�case impact can be bounded� Three extensions to a JVM implementation are

used� Firstly� a new scheduler allows the allocation of CPU time to threads to be controlled� Secondly�

a code generator provides a mechanism for run�time compilation� Finally� a control interface allow

application�speci�c compilation policies to be speci�ed� By de�ning a compilation policy in which

native code is generated in a designated compiler thread with a limited CPU allocation� it is possible

to bound the worst�case impact of the compiler�

1 Introduction

The widespread deployment of the Java language is curtailed by the performance of existing implemen�

tations of the Java Virtual Machine �JVM� �LY���	� Although there are numerous and well known

techniques for optimizing object�oriented programming languages� the extent to which these can be ap�

plied within the JVM is limited by the need to perform this optimization at run�time and the trade�o

between start�up latency and subsequent performance�

In this paper the JVM is assumed to be executing applications loaded from standard class �les �as

opposed� for example� to pre�compiled or fat binary �les	� This assumption precludes the use of ahead�

�APM Ltd is a subsidiary of Citrix Systems Inc

H/W

S/W Sched.

App. App. Device
Driver

System
Domain

Priv

Unpriv

O.S. O.S. O.S. O.S.

Driver StubsSyscalls

Figure 1: The structure of the Nemesis operating system.

of�time compilation since the complete set of classes which comprise a partiticular application is known

only at run�time� There are two key motivations for providing of a controlable framework for run�time

compilation � either an increase in the performance of an application� or a reduction in the resources

required by an application for it to run at a particular rate�

This paper introduces extensions to a JVM implementation which increase control over when and

where run�time compilation occurs� Section
 describes the environment in which this work has taken

place� Section � describes the implementation of a new thread scheduler� Section � describes the compiler

and Section � the compilation�control interface� Section � discusses related work and Section � concludes�

2 Nemesis

This work has been undertaken over Nemesis �LMB����� an operating system being developed to pro�

vide �ne�grained resource management with speci�c attention to the needs of interactive soft�real�time

multimedia and networked applications�

The structure of Nemesis is summarized in Figure �� Note that there are no �kernel threads�� the use of

privileged code is minimized� and applications� system domains and device drivers operate almost�entirely

within user space� The motivation for this vertically structured design is that it allows accountability

between applications and the resources that they use� This is because applications are doing more of

their work for themselves rather than relying on the kernel or on shared servers to operate on their behalf�

For example� consider a program receiving� processing and displaying data from the network� Wher�

ever possible the network protocol processing and screen updates are implemented within shared libraries

and performed by threads within the application� In contrast� for a similar program executing over

UNIX� many of these operations would occur within the kernel �and would not be accounted to any

application	 or the X server �again� unaccounted to the speci�c application	�

3 Thread scheduler

The thread scheduling policy described here is broadly similar to that provided by the Nemesis process

scheduler �Ros���� The CPU requirements of a thread are expressed as a �p� s� x� t	 tuple� encoding a

period� slice� extra time �ag and priority respectively� For example a requirement of ���ms� �ms� True� �	

represents an allocation of �ms CPU time every ��ms of real�time and that it has priority ��� for receiving

any �extra� time that remains if all the allocations are met�

3.1 Scheduler implementation

The scheduler uses an earliest deadline �rst �EDF	 policy� Each thread is assigned a deadline of the

end of its current period� by which time it should have received its slice of the CPU� The scheduler

conceptually maintains three data structures�

�� A list containing all of the threads� irrespective of whether they are runnable or blocked�

� A run queue containing threads which are eligible for execution� This excludes threads which are

not runnable� or which have already expended their CPU allocation and do not wish to receive a

share of extra time� Threads on the run queue are ordered ��	 the thread currently inside a critical

section� �
	 threads with some remainingCPU allocation� held in EDF order and ��	 threads which

have exhausted their CPU allocation� but which have requested a share of extra time� These are

held in priority order �highest priority �rst	�

�� An allocation queue containing threads which have a non�zero CPU allocation� ordered according

to the start of their next period�

When activated� the thread scheduler performs three tasks� Firstly� it charges the previously executing

thread with the CPU time that it has just received� Secondly� it allocates new slices of CPU time to any

threads which have reached the start of their next period� Finally� if there are any threads eligible to be

Load
.class blocks

Form

Install
code

Java

Native code

Gen x86

Optimize

Compile

Extended
reflection
interface

Figure 2: The structure of the compiler.

executed� it selects the thread at the head of the run queue and sets an alarm timer for when any other

thread will obtain an earlier deadline�

4 Native code generator

The compiler used here is relatively straightforward since the motivation is to provide a controllable

implementation rather than to establish new optimization techniques� The structure of the compiler is

shown in Figure
� Compilation is a three phase process� Firstly� the bytecode implementation from the

�class �le is broken into basic blocks and the contents of the constant pool are resolved� Secondly� the

code generator produces native code for each basic block� Finally� the generated code is installed so that

it will be executed if the method is invoked in the future�

The code generator consists of three modules � a platform�independent code generator� a simple

optimizer and a target�dependent code generator� The optimizer and target�dependent section form a

layered structure with an identical interface between adjacent modules� This means that the optimizer

can be removed to increase the rate of code generation at the expense of code quality�

The platform�independent section generates RISC�like ��address�code directly from the Java byte�

code� The optimizer� if present� maintains details of outstanding assignment instructions which have yet

to be passed to the target�dependent code generator� These mappings are used to rename operands on

subsequent instructions in an attempt to reduce the frequency of memory accesses� The technique is

essentially the same as that described in �ATCL����� Forward branches are handled by back�patching

the generated code when the target address becomes known�

Add integer
Add float
Cast integer to byte
Cast integer to float
Method call
Method call (4 arguments)
Static method call
Interface method call
Enter and leave monitor
New array
New instance

Test

2.9
1.2
6.5
1.5
2.5
2.7
1.1
1.4
1.2
5.7
0.8

1.2

1.6
2.8
2.9
1.2
1.5
1.3
6.6
0.8

10.0

10.5

Without
optimizer

With
optimizer

Figure 3: Microbenchmarks showing the speed-up of individual operations relative to the original JDK 1.1.4 interpreter.

4.1 Results

Figure � compares micro�benchmark scores achieved with and without optimization� Since neither the

optimizer nor the interpreter will perform inter�block optimization it is reasonable to believe that these

results will scale to large applications and that the overall bene�t will therefore depend primarily on the

dynamic instruction mix� Measurements with larger applications �such as the javac compiler	 show that

a two�fold speedup is typical�

5 Control of compilation

Compilation is controlled by dispatchers which are associated with particular sub�trees of the package

hierarchy and on which dispatchMethodImpl is invoked whenever a method in the sub�tree is called

for the �rst time� The mapping from package names to dispatchers is maintained by static methods of

DispatcherRegistry� This provides a mechanism for introducing class�speci�c processing into standard

method invocations in a similar manner to the meta�class facilities provided in other object�oriented

languages such as Smalltalk or extended dialects of C���

Figure � illustrates how dispatchers may be used to implement a particular execution policy� The

standard �java��� classes are registered with a dispatcher which loads a pre�compiled implementa�

tion �perhaps one generated o
�line with a highly optimizing compiler	� Classes whose names be�

gin UK�ac�cam�cl�tlh���� will be compiled in the background �see section ���	� The single class

UK�ac�cam�cl�tlh���UserInterface will not be compiled at all� Other classes will be handled ac�

cording to the system�s default policy� Ambiguity is resolved by selecting the most speci�c match� The

Main

tlh20

cam

ac

UK java

lang

Object Vector

cl

java.* => Load pre-compiled code

* => System default

UK.ac.cam.cl.tlh20.UserInterface

UK.ac.cam.cl.tlh20.*
=> Compile in background

=> Do not compile

UserInterface

Figure 4: Dispatchers are used to control how different sections of the package hierarchy are executed. In this example,

standard classes are loaded from pre-compiled versions, part of an application is compiled in the background and another part

will not be compiled at all.

public class JITDispatcher extends Dispatcher {

 private static Compiler compiler = new Compiler ();

 public void dispatchMethodImpl (KCMethod m)

 throws DispatcherException {

 compiler.compileMethod (new CompilableMethod (m));

 }

}

Figure 5: The Java source code for a dispatcher which implements a ‘just in time’ compilation policy.

implementation of a dispatcher can be very straightforward� Figure � shows the complete source code

for a dispatcher which eagerly compiles methods as soon as they are invoked�

Dispatcher lookup is implemented e�ciently by caching lookup results on a per�class basis� A �
�bit

sequence number is associated with the current mapping from the package name�space to dispatchers�

This sequence number is increased whenever the mapping could potentially change and a full lookup

operation is only performed if the sequence number recorded in a class is stale�

5.1 Background compilation

By arranging that compilation happens in designated compiler threads it is possible to bound the worst�

case e
ect that compilation can have on the progress made by an application� This approach relies on

using a thread�s CPU allocation as an upper limit on the resource that it may consume and therefore on

0

20

40

60

80

100

0 100000 200000 300000 400000 500000

%
 o

f b
en

ch
m

ar
k

co
m

pl
et

e

Time

Interpreter
JIT compilter

5%
30%
50%

Figure 6: JIT compilation, interpreted execution and background compilation with 5%, 30% and 50% CPU allocations.

the impact that it may have on other concurrently executing tasks� For example it is possible to allocate

some percentage of the CPU to compilation and a separate percentage to the interpreter� This control�

coupled with �ne�grained thread switching� means that a user will simply see their application executing

slowly during compilation� rather than stopping completely�

By varying the allocation of CPU time to the compiler thread it is possible to trade interactivity

against overall performance� For example running the compilation thread without any allocation corre�

sponds to compiling during idle time whereas a ���� allocation provides JIT compilation� This technique

is possible as a consequence of the thread scheduler described in section � and demonstrates the value of

this scheduling policy over the normal priority�based scheme�

This trade�o
 is illustrated in Figure � which compares JIT compilation and interpreted execution

against background compilation with a ��� ��� and ��� CPU allocation to the compiler� The JVM as

a whole had a ��� allocation of the CPU�

The y�axis shows the percentage of a simple benchmark that has been completed while the x�axis shows

the elapsed time� The interpreter�s trace shows a low� straight line which means that the benchmark is

being completed slowly but at a steady rate� The JIT compiler�s trace shows a steeper line with some

abrupt steps� This shows that the benchmark is being completed more rapidly but that there are pauses

during which no progress is made at all� These pauses correspond to sections of the benchmark in which

0

50

100

150

200

250

0 10 20 30 40 50 60 70

E
m

be
dd

ed
 c

af
fe

in
em

ar
k

sc
or

e

% CPU allocated to background task

Background compiler
Background loop

Figure 7: Degradation of run-time performance due to background compilation.

new methods are executed� triggering compilation�

If a background compiler is given a small �� CPU allocation then the trace remains steady and is

even shallower than that of the interpreter� This is because the compiler is operating slowly and fails to

�nish compiling methods before execution shifts to another part of the benchmark� As the allocation is

increased the trace approaches that of the JIT compiler�

5.1.1 Crosstalk between compilation and execution

An obvious concern with this approach is the extent to which background compilation may interfere with

the execution of the application � that is� whether the worst�case impact is solely the proportion of the

CPU time allocated to compilation� or whether signi�cant degradation is caused by increased contention

in the processor caches or perhaps for mutual�exclusion locks within the implementation of the JVM�

Figure � compares the performance of a Java application while a percentage of the CPU is allocated

to either background compilation or to a busy loop� These results indicate that background compilation

causes a slight additional degradation of performance� although the relationship between performance

and the CPU allocated to the foreground task remains approximately linear� The performance �gures

were recorded using Version
 of the Ca
eineMark embedded application Java benchmark�

6 Related work

The technique of run�time generation of native code has been widely used as a means of improving the

performance of an interpreter� The Deutsch�Shi
man Smalltalk��� implementation �DS��� uses run�time

code generation to achieve acceptable performance on conventional hardware� The generated code is

cached in physical memory since the time taken reloading code after it was paged out was perceived to

be larger than the time taken to regenerate it�

Self �CUL��� is a dynamically�typed pure prototype�based object�oriented language in which message

sends are extremely frequent� It has traditionally been implemented using dynamic compilation and

dependency links between source and compiled methods �HCU�
� CU��� HU����

Particular attention is paid to optimizing message passing and to avoiding intrusive pauses during

compilation �H�ol���� Polymorphic inline caching is used to implement message sends e�ciently and

to provide type feedback information to guide inlining and compilation� Optimization is performed

adaptively and only on heavily�used methods�

These techniques are applied to Java in the Pep compiler� �Age���� Pep executes Java applications by

automatically converting them to Self bytecodes and then re�using the implementation of the Self virtual

machine� Future releases of the JDK are believed to use a more integrated implementation of the same

technique �Gri����

The NewMonics PERC system is a dialect of Java that is �designed to support development of cost�

e�ective portable real�time software components� �NL���� It therefore addresses the issue of processor

scheduling� It is designed to support hard real�time tasks through the use of language extensions which

express timing constraints and the use of bytecode analysis to determine an upper bound on execution

time �for a restricted subset of the Java language	� PERC employs rate�monotonic scheduling to control

the execution of real�time tasks with periodic operation�

Unlike the scheduler described above� the PERC API allows threads to specify the maximum jitter

that they will tolerate �i�e� the maximum amount by which the time that they receive their allocation of

the processor may vary from period to period	�

7 Conclusion

This paper has described the integration of a controllable native code generator and a new thread scheduler

with the JVM� Although the compiler presented here is straightforward� the technique of background

compilation could be used to integrate more �heavyweight� run�time optimization while allowing the

worst�case impact of the compiler to be bounded and the responsiveness of interactive applications to be

maintained�

References
�Age��� Ole Agesen� Design and implementation of Pep� a Java just�in�time translator� Theory and

Practice of Object Sytems� ��
	��
������ �����

�ATCL���� Ali�Reza Adl�Tabatabai� Michal Cierniak� Guei�Yuan Lueh� Vishesh M� Parikh� and
James M� Stichnoth� Fast and e
ective code generation in a just�in�time Java compiler�
ACM SIGPLAN Notices� ����	�
���
��� May �����

�CU��� Craig Chambers and David Ungar� Making pure object�oriented languages practical� In
Andreas Paepcke� editor� Proceedings of the �th Annual Conference on Object�Oriented Pro�
gramming Systems� Languages and Applications �OOPSLA ��	
� pages ����� ACM Press�
October �����

�CUL��� C� Chambers� D� Ungar� and E� Lee� An e�cient implementation of SELF a dynamically�
typed object�oriented language based on prototypes� ACM SIGPLAN Notices�
����	�������
October �����

�DS��� Peter Deutsch and Alan M� Schi
man� E�cient implementation of the smalltalk��� system�
In Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming
Languages� pages
�����
� ACM� ACM� January �����

�Gri��� David Griswold� The Java HotSpot virtual machine architecture� March ����� http�

��www�javasoft�com�products�hotspot�whitepaper�html�

�HCU�
� Urs Hoelzle� Craig Chambers� and David Ungar� Debugging optimized code with dynamic
deoptimization� ACM SIGPLAN Notices�
���	��
���� ���
�

�H�ol��� Urs H�olzle� Adaptive optimization for SELF� Reconciling high performance with exploratory
programming� Thesi CS�TR������
�� Stanford University� Department of Computer Science�
August �����

�HU��� U� H�olzle and D� Ungar� Optimizing dynamically�dispatched calls with run�time type feed�
back� ACM SIGPLAN Notices�
���	��
������ June �����

�LMB���� I� M� Leslie� D� McAuley� R� Black� T� Roscoe� P� Barham� D� Evers� R� Fairbairns� and
E� Hyden� The Design and Implementation of an Operating System to Support Distributed
Multimedia Applications� IEEE Journal on Selected Areas In Communications� ����	��
���
�
��� September ����� Article describes state in May �����

�LY��� Tim Lindholm and Frank Yellin� The Java Virtual Machine Speci�cation� The Java Series�
Addison�Wesley� Reading� MA� USA� January �����

�NL��� Kelvin Nilsen and Steve Lee� PERC real�time API� July ����� NewMonics� Inc�

�Ros��� Timothy Roscoe� The Structure of a Multi�Service Operating System� Technical Report ����
University of Cambridge Computer Laboratory� August �����

