Early storage reclamation

in a tracing garbage collector

Timothy Harris, Citrix Systems (Cambridge) Ltd,
Poseidon House, Castle Park, Cambridge, UK, CB3 0RD.
Tel: +44 1223 515010. Fax: +44 1223 359779. tim.harris@citrix.com

December 6, 1998

Abstract

This article presents a novel technique for allowing the early
recovery of storage space occupied by garbage data. The
idea is similar to that of generational garbage collection,
except that heap is partitioned based on a static analysis of
data type definitions rather than on the approximate age of
allocated objects. A prototype implementation is presented,
along with initial results and ideas for future work.

1 Introduction
It has been widely acknowledged that the type information
present in a program written in a high level language can
provide valuable opportunities for improving run-time per-
formance.

Examples of this are pervasive.
tion gleaned from type analysis allows natural unbozred rep-

For instance, informa-

resentations of primitive quantities like integers, even in the
presence of polymorphism [Mor95, HU95]. The precision
of pointer-aliasing analysis in an imperative language can
be improved by considering the types of the pointers in-
volved [App98]. Run-time feedback can help reduce the
overhead of virtual method lookup in an object oriented lan-
guage [H6194].

This article describes a further exploitation of type in-
formation: aiding the safe and early reclamation of storage
space in a garbage collected heap. In particular, the ap-
proach addresses a well-known problem with classical mark-
sweep and copying garbage collectors which is that no space
can be reclaimed until the entire graph of reachable objects
has been examined [JL96]. By allowing earlier reclamation
of storage space it may be possible to reduce the total size
of the heap required with practically no additional effort on
the part of the collector.

Section 2 summarizes the approach taken. Section 3 de-
scribes the implementation of a prototype collector. Sec-
tion 4 presents some initial results from the prototype. Sec-
tion 5 discusses the relationship to previous work. Section 6
suggests some future work and Section 7 concludes.

%:j‘ ﬁ;
PN

Figure 1: A traditional heap containing various objects (left) and the same
objects segregated into four partitions (right). Each object is represented
by a shaded box and each reference between objects is represented by
an arrow. The node indicated in the top-left is the only root of this object
graph. Some of the other nodes (for example the pale gray node at the top
right) are unreachable.

2 Design

The idea 1s to separate the heap into a number of partitions
between which a partial ordering can be established so that
if p; < p; then references may exist from p; to p;, but not
vice versa. This means that when all of the reachable objects
in partitions up to p; have been scanned then any remaining
objects in p; are known to be garbage and the space that
they occupy may be reclaimed.

The partitioning algorithm presented here is phrased in
the terms of the Java programming language, for which a
prototype implementation has been developed. Essentially,
it uses the class definitions to derive constraints on how ob-
ject references may be manipulated at run time.

2.1 Example

By way of illustration, Figure 1 shows a stylized snapshot of
a traditional heap. The marked node in the top-left is a root
— in this example it is the only root. The nodes represent
objects and the directed edges between them represent refer-
ences. Figure 1 also shows a corresponding heap in which the
placement of the objects has been re-arranged and the heap
has been segregated (by the horizontal lines) into four par-
titions. Note how inter-partition references only flow down
the figure.

2.2 Object model

A simplified version of the Java object model is used for the
sake of brevity. Most notably, the simplification discards the
distinction between Java interface and class definitions.
The interfaces implemented by a class are considered to be
additional direct superclasses. The public, protected and
private modifiers are also discarded. These simplifications
remove the aspects of a class definition which are concerned
with the run-time implementation of the class.

Figure 2 illustrates this by way of an example showing a
set of classes modelled after the description of a binomial
heap in [CLRI0]. The exact details of this are unimportant
since it 1s only used as a running example — the general
idea is that a binomial heap holds a mapping from keys
(instances of subclasses of Comparable) to values (instances
of subclasses of Storable).

The gray boxes represent classes. A dashed arrow 1s drawn
from a class to each of its direct superclasses. A solid ar-
row, annotated by a field name, is drawn from a class to
each of the classes referenced by one of its fields. For exam-
ple, IntegerValue is a subclass of Storable and the class
BinomialTreeNode contains a field value of type Storable.

A field can contain either a reference to an instance of a
subclass of the field type, or the special value null which
does not refer to any instance. In this example the field
value of an instance of BinomialTreeNode could hold a
reference to an instance of Storable or to an instance of
IntegerValue.

2.3 Relationships between classes
More precisely, there are two relevant relationships between
classes: <4, the direct-superclass relationship and —., the
direct-reference relationship.

¢1 <4 ¢o holds between classes ¢ and ¢s when ¢5 1s a direct
superclass of ¢;. For example IntegerValue <4 Storable,
but IntegerValue <4 Object. < denotes the reflexive
transitive closure of <4, so IntegerValue <; Object.

¢1 — ¢9 holds when a field of type ¢y is defined in class
¢1. For example BinomialTree — BinomialTreeNode,
but BinomialHeapNode -~ BinomialTreeNode and
DebugIntegerValue /> Integer.

From these a further relationship is established, =, which
informally means can refer to. That i1s, ¢; = c¢o when
an 1nstance of class ¢; could contain a reference to class
¢s. For example BinomialTree = BinomialTreeNode, and
DebuglntegerValue = Integer. This relationship is de-
fined recursively as follows:

€1 — ¢ c1 <jcs 3= ey

c1 =z e <jes

c1 = Co c1 = Co c1 = Co

Figure 3 shows the resulting class graph for the exam-
ple class hierarchy. An arrow is drawn from ¢; to ¢s when
¢1 = c¢3. The effect 1s to propagate the ‘from’ and ‘to’
sides of field definitions down from superclasses to their sub-
classes. For example, the class IntegerValue defines a field
value of type Integer. This means that an instance of

IntegerValue, or any subclass of IntegerValue, can po-
tentially refer to any instance of Integer, or any subclass of
Integer.

This static analysis is, of course, overly pessimistic.
¢1 = ¢ means that an instance of ¢; may refer to an in-
stance of ¢y, even though this kind of relationship may never
be established during the execution of a program — ¢; and ¢,
may even never be instantiated. The extent to which a more
precise analysis may be developed is discussed in Section 6.

2.4 Segregating the heap

We now wish to segregate the nodes in this class graph into
partitions and to establish a partial ordering between parti-
tions, as described above in the overview. That is, we wish
to generate a partition graph in which each node represents
a partition and an edge is drawn from p; to ps when objects
held in p; may refer to objects held in ps.

This is achieved by noting that each partition corresponds
to a strongly connected component in the class graph: each
partition consists of a maximal set of classes within which
¢1 = ¢ and c3 = ¢y for each pair of classes ¢; and
¢2. The resulting partition graph is acyclic by its construc-
tion [CLRI0].

This is illustrated in Figure 4, in which a dashed box is
drawn around the classes in each partition.

3 Implementation

A prototype implementation for the Java programming lan-
guage has been constructed based on Baker’s treadmill col-
lector [Bak91] integrated with version 1.1.4 of the Sun JDK.
This section provides a brief overview of the treadmill collec-
tor, followed by details of how the heap-partitioning analysis
1s implemented and how the treadmill collector is modified
to use the information that this generates.

3.1 Treadmill collector
The traditional treadmill collector shown in Figure 5 is a
non-copying implementation of a two-space garbage collec-
tor. It was originally proposed to avoid the repeated copying
of all live objects during each collection cycle.

Objects are organized on a circular doubly linked list
which is divided into four sections:

1. Pree section, containing blocks which are available for
allocation.

2. New section, containing objects which have been allo-
cated since the start of the current collection cycle. Us-
ing the traditional terminology of tri-colour marking,
objects are allocated black.

3. To section, containing objects which have been scanned
during the current collection cycle and which need to
be preserved.

4. From section, containing objects which were allocated
before the start of the current collection cycle and which
have not yet been scanned.

Object S
AR
AN Y N
) parent,
child, sibling
; — " . root .
BinomialTree - BinomialTreeNode

next 'BinomialHeapNode
head) key degree
Storable Comparable Integer
/;\ /\ key value
heap
BinomialHeap IntegerValue IntegerKey
DebuglntegerValue
Figure 2: Example class hierarchy.
O O ‘ Storable ‘ ‘ IntegerValue
BinomialHeap e{5BinomiaIHea\pNode}%‘ BinomialTree }%‘BinomialTreeNode} } Integer ‘ ‘ Object
‘ Comparable ‘ ‘ IntegerKey

Figure 3: Class graph.

BinomialHeap Sirreeeieiieeeg
inomialHeapNode

: ’ BinomialTree ‘ — ’BinomialTreeNode‘ s

e ‘ : Storable T / """""""""""" ‘
‘| IntegerKey

Figure 4: Partition graph.

Free

From

- A,

Figure 5: Baker's treadmill collector. As objects are allocated the bound-
ary between the new and free regions circulates clockwise. As objects
are scanned the boundary between the to and from regions circulates
counter-clockwise. If memory is not to be exhausted then the two bound-
aries must be prevented from colliding. In practise there would be many
more objects in each of the sections.

Free space

3-From

3-To

Figure 6: Modified treadmill in which a separate new, to and from section
is defined for each partition. The partitions are organized so that they are
topologically sorted when considered counter-clockwise from the common
free section. Within each partition instances are organized as before on a
doubly linked list. This is illustrated for the 3-from section, in which there
are four gray objects and two white objects.

The from section therefore comprises a mixture of objects
which are non-garbage and awaiting scanning (gray) and ob-
jects that are candidate garbage (white). The objects within
from from section are organized so that the gray objects are
held contiguously towards the front of the from section, that
is towards the boundary between the from and fo sections.
Note that this approach differs from the original presenta-
tion of the treadmill collector, in which gray objects were
held in the to section and a separate pointer was used to
identify the boundary between black and gray objects.

Initially the to section is empty and the objects referenced
from the roots are grayed and immediately at the front of
the from section. Scanning proceeds as follows:

while (object at front of ‘from’ is gray) {
mark object black
place object in ‘to’
foreach (child of object) {
if (child is white) {
mark child gray
move child to front of ‘from’
}
}
}

This corresponds to a depth-first traversal of the object
graph. An alternative breadth-first traversal could be im-
plemented by moving objects to the white/gray boundary
within the from section rather than moving them directly to
the front of the section.

3.2 Assigning classes to partitions
The algorithm described in Section 2 analyses the complete
class hierarchy in order to assign classes to partitions. How-

ever, this approach is not sufficient for use with Java since
the JVM may load and initialize classes at various points
during the execution of a program — it is often possible for
an application to define new classes dynamically through the
loadClass method of a class-loader [LB9S§].

Rather than performing a single analysis phase, the pro-
totype implementation updates the mapping from classes to
partitions on each occasion that a class 1s instantiated for
the first time. A secondary benefit of only considering in-
stantiated classes is that 1t ensures that, at any point in
the analysis, only a single class needs to be considered. It
may also allow partitions to contain fewer classes if there are
classes which contribute edges to the class graph but which
are never instantiated.

3.3 Representing partitions

Each partition is represented at run time by a singly linked
list of classes. This makes it straightforward to merge par-
titions when new classes are loaded and also allows the size
of partitions to vary dynamically. Each class definition con-
tains a pointer back to the partition of which it is a member.

The partition graph is represented by holding the parti-
tions topologically sorted on a linked list. The organization
of partitions on this list corresponds to the order in which
they will be scanned (see Section 3.4, below).

Note that there is no per-instance overhead since the JVM
already maintains sufficient detail to recover the class of any
instance. This information is usually used for virtual method
dispatch, for unavoidable run-time type checks, for distin-
guishing fields containing references during garbage collec-
tion and for the implementation of the Object.getClass()
method.

Partition Classes Size Partition Classes Size
number number
1 139 1919032 20 1 560
2 1 160 21 1 28172
3 1 344 22 1 213376
4 1 16 23 1 8
5 1 40 24 1 3480
6 1 1360 25 1 22344
7 1 1304 26 4 84
8 1 6024 27 1 48
9 1 7168 28 1 352
10 1 336 29 1 444
11 1 576 30 1 516
12 1 1312 31 1 328
13 1 2504 32 1 291768
14 1 11144 33 1 1085220
15 1 1864 34 1 4856170
16 I 640 35 1 912303
17 1 4860 36 1 3656
18 1 27340 37 1 216
19 1 96

Figure 7: Heap partitions that can be established when using the javac
application to compile some Java source code to bytecode.

Partition Classes Size Partition Classes Size
number number

1 21 198788 20 1 4
2 1 64 21 1 91484
3 1 204 22 4 84
4 1 4 23 1 20280
5 1 128 24 1 1152
6 1 6960 25 1 36
7 1 20880 26 1 15132
8 1 1612 27 1 5056
9 1 27840 28 1 211968

10 1 15156 29 1 288900

11 1 16840 30 1 7395
12 1 10056 31 1 16493054
13 1 13472 32 1 8785176
14 I 6736 33 1 232700
15 1 28628

16 1 44

17 1 18128

18 1 5064

19 1 8

Figure 8: Heap partitions that can be established when using the jar
application to create an archive of class files.

3.4 Changes

The basic treadmill of Figure 5 is extended to incorporate
separate new, to and from sections for each of the parti-
tions. These sections are organized so that, when consid-
ered counter-clockwise from the common free section, the
partitions appear topologically sorted.

Figure 6 illustrates this with an example. There are three
partitions, labelled 1, 2 and & and so perhaps 1 = 2 and
1 = 3. Scanning is in progress in the from region of the first
partition. Note that there are already gray objects in each of
the other partitions — these are objects which are reachable
directly from the roots, or which are reachable from one of
the scanned objects in the first partition. When the from
section of the first partition has been scanned completely
any white objects which remain in it can be reclaimed im-
mediately. The collector implementation proceeds with re-
markably few changes:

start with first partition
while (not scanned all partitions) {
while (object at front of current ‘from’
section is gray) {
mark object black
move object to current ‘to’ section
foreach (child of next object) {
if (child is white) {
mark child gray
move child to front of ‘from’ section
of the partition it is in
b
b
b
reclaim white objects in current partition
select next partition

Note in particular that the inner loop, in which the col-
lector is scanning gray objects and examining their children,
is practically unchanged.

Although it is not discussed here, the handling of objects
within the free section is also substantially modified in order
to allow variable sized allocations to be handled with rea-
sonable performance. The approach taken roughly follows
the use of segregated free lists in [LPB98].

4 Results

The results presented here show the performance of the mod-
ified treadmill collector when it is used with two example
applications, javac (a Java-to-bytecode compiler) and jar
(a tool which generates archives of Java class files). In each
case the collector was configured to scan two objects every
time that an allocation was requested.

Figures 7 and 8 show the extent to which the heap may
be partitioned in these two cases. The tables in these fig-
ures show the partitions in the order in which they will be
scanned, the number of classes assigned to each partition
and the total size (in bytes) of all instantiations of those
classes. In each case there is an initial partition containing
many classes, followed by many smaller partitions each of
which typically contains only a single class. The classes in
this initial partition tend to be those which have fields of
type Object and which may therefore potentially refer to
any instance. The extent to which it may be possible to re-
duce the size of this initial partition is discussed in Section 6.

In the case of the javac application, the level to which
the heap may be partitioned is disappointing — almost all of
the classes which represent nodes in the parse tree are drawn
into the initial partition. However although the initial par-
tition contains many of the classes 1t does not individually

8e+06 T T T T T T T T T

Single heap -----
Partitioned heap —

7e+06

6e+06 7}/

5e+06

Heap size

4e+06

3e+06

T
!

2e:

+06 1 1 1 1 1 1 1 1 1
3e+07 3.1e+07 3.2e+07 3.3e+07 3.4e+07 3.5e+07 3.6e+07 3.7e+07 3.8e+07 3.9e+07 4e+07
Bytes allocated since start

Figure 9: Heap size while running the javac Java-to-bytecode compiler
using an un-modified treadmill collector and a partitioned heap.

1e+07 T T T T T

Single heap -----
/ Partitioned heap —

8e+06

6e+06

Heap size

4e+06

2e+06

1 1 1 1
0 5e+06 1e+07 1.5e+07 2e+07
Bytes allocated since start

1
2.5e+07 3e+07

Figure 10: Heap size while building a multi-file jar archive using an un-
modified treadmill collector and a partitioned heap.

contribute most to the size of the heap — the partition con-
taining arrays of the primitive char type has approximately
twice the total size.

Figures 9 and 10 show the total heap size during the execu-
tion of the javac and jar applications. The horizontal axis
shows elapsed time, measured in the total number of bytes
allocated since execution began. The vertical axis shows the
total size of the non-free regions of the heap. Note how the
traces from an un-partitioned heap have a ‘spiky’ appear-
ance, in which a long garbage collection cycle is followed
by a sudden reclamation of free memory. In comparison,
the traces from a partitioned heap exhibit smaller spikes,
showing how space is reclaimed at several points during the
course of a single collection cycle.

5 Related work

The idea of separating different kinds of objects is not new.
Indeed, the usual distinction that is drawn between the root
set and the heap is essentially the same as the distinction
between partitions — references may exist from the root set
into heap-allocated objects, but heap-allocated objects do
not contain references back to the root set.

The technique of segregating objects which contain ref-
erences from those which do not has been seen to have
several potential benefits. For example, separating large
objects containing bitmapped graphics or text strings may
avoid the cost of scanning these objects in vain for point-
ers [GR83, JLI96]. The technique also allows these sections
of the heap to be managed under different policies — for ex-
ample by using a copying and compacting collector for the
majority of the heap, but avoiding copying the large and
potentially long-lived bitmaps whenever possible.

5.1 Atomic objects

A similar distinction is drawn in the Boehm-Demers-Weiser
collector between normal and atomic data [Boe93]. This is a
conservative garbage collector that may be used in ‘hostile’
environments such as those provided by C and C++ appli-
cations. By segregating atomic objects the frequency with
which the conservative collector mistakes non-pointer values
for pointers is reduced.

5.2 Generational collection

A generational garbage collector separates the heap into a
number of generations according to an estimate of the ages
of objects [Ung84]. In the simplest case there may only be
two generations, a new generation which contains recently
allocated objects and an old generation which contains ob-
jects which have existed for some time. This approach is
motivated by the intuition that most objects die young and
that it is therefore more productive to scan new objects fre-
quently rather than to scan the entire heap less often.

In most languages, however, it is necessary to be particu-
larly careful about inter-generational pointers — it is possible
for references to exist between the new and old generations
in either direction. In contrast, the partitioning algorithm
presented here leverages the safety of the programming lan-
guage to guarantee that references only flow between parti-
tions in one direction.

Previous work in the context of Standard ML [Rep93] has
further segregated generations into arenas which contain dif-
ferent kinds of objects. Aside from records (the most com-
mon ML objects), there are separate arenas for pairs, strings,
arrays and code. Pairs (records which contain two pointers)
are segregated in order to avoid storing a descriptor with
each individual pair. Strings are atomic objects which can-
not contain pointers. Arrays include all non-atomic mutable
objects which are segregated in order to help track inter-
generational references more efficiently. Code objects tend

to be both large and long-lived and are segregated so that
they may be managed with a mark-sweep collector in order
to avoid unnecessary copying.

5.3 Regions

Recent work, also using ML, has proposed a quite different
organization in which the heap is formed from a stack of
regions [TT94, TTI7, Tof98]. Each region is itself a stack of
potentially unbounded size and allocations may be made at
any time into any of the regions. Storage space 1s reclaimed
by popping entire regions from the stack.

A translation is defined from well-typed source language
expressions into a target language in which region manage-
ment i1s explicit. Although superficially similar, there are
several fundamental differences between the approach taken
when using regions for memory management and when using
the static analysis described above. Essentially, region-based
storage management offers a potential replacement for tra-
ditional reference-tracing garbage collection. Also, the par-
titioning algorithm described above considers is based solely
on the class hierarchy and field definitions, rather than on
an analysis of method definitions.

The success of region based memory management is noted
to depend on programs being written in a region friendly
style based on profiling tools or intuition. In a similar man-
ner, it 1s possible to note that the success or failure of the
partitioning algorithm described here is dependent on the
style in which a program is expressed.

6 Future work

The results presented in Figure 7 and Figure 8 illustrate
the extent to which the straightforward analysis presented
here is able to segregate the heap into partitions. In each
case however there is a large initial partition which accounts
for a significant proportion of the heap — both in terms of
the number of classes that it contains and in the total size
occupied by instances allocated within the partition.

The analysis on which the prototype implementation is
based takes a very pessimistic view of how references may
be manipulated. The worst case of this is that instances
of any class which defines a field of type Object must be
considered to be able to refer to any other object — even
when this freedom is not exploited in a particular program.

For example, the class java.util.HashtableEntry (used
in the definition of ‘generic’ hash-tables) contains key and
value fields of type Object. However, a programmer in-
stantiating a hashtable is likely to do so with the intention
that it holds a more restricted set of objects — for exam-
ple objects which all subclass a particular class or which all
implement a particular interface (as was the case with the
BinomialTreeNode shown in Figure 2).

The problem presented here is related to the one that
the current proposals for adding parameterized types to the
Java language are trying to solve [BOSW98, OW97, AFMO7,
MBL97]. These proposals generally provide a mechanism for
writing a class definition in a ‘generic’ style and then param-

eterizing it at different places where it may be instantiated
— for example a suitably-parameterized hashtable definition
may be able to hold a mapping from Strings to Strings
when instantiated from Hashtable<String,String> but a
mapping from Integers to InputStreams when instantiated
from Hashtable<Integer,InputStream>. The key aims for
providing parameterized types are to allow more thorough
compile-time checking of programs and to reduce the over-
head that is imposed by run-time type-checks which the pro-
grammer knows are obuiously going to succeed.

It is possible, to varying degrees, to build on this exist-
ing work. The stumbling block is that many of the exist-
ing approaches discard the additional type information quite
early during compilation as a consequence of being defined
in terms of a translation into standard Java source code
or into standard Java .class files. The approach recently
taken by Solorzano and Alagie [SA98] is perhaps more suit-
able since it preserves information about generic classes and
their instantiations until run-time. The original motivation
for this approach was to address shortcomings in both the
homogeneous and heterogenous translations of earlier imple-
mentations [OW97] and in doing so to extend Java Core
Reflection [JCR] to manipulate generic classes cleanly.

7 Conclusions

This article has described a novel technique for allowing
early reclamation of storage space based on a static analysis
of class definitions. The prototype implementation, based on
a modified version of Baker’s treadmill collector, has demon-
strated the utility of this approach and the ability for it to be
implemented with virtually no changes in the inner loop of
the collector and no per-instance storage overhead. Future
work 1is proposed to investigate how a more finely grained
partitioning may be developed.

References
[AFMO7] Ole Agesen, Stephen N. Freund, and John C.
Mitchell. Adding type parameterization to the
Java language. In Object Oriented Programing:
Systems, Languages, and Applications (OOP-

SLA), October 1997.

[App98] Andrew W. Appel. Modern Compiler Implemen-

tation in C. Cambridge University Press, 1998.

[Bak91] Henry G. Baker, Jr. The Treadmill: Real-time

garbage collection without motion sickness. In
OOPSLA ’91 Workshop on Garbage Collection
i Object-Oriented Systems, October 1991. Po-
sition paper. Also appears as SIGPLAN Notices
27(3):66-70, March 1992.

[Boe93] Hans-Juergen Boehm. Space efficient con-
servative garbage collection. In Proceedings
of SIGPLAN’93 Conference on Programming

Languages Design and Implementation, volume

[BOSW9S]

[CLRI0]

[GR83]

[H&194]

[HU95]

[JCR]

[JL96]

[LBYS]

[LPBIS]

[MBLYT7]

[Mor95]

28(6) of SIGPLAN Notices, pages 197-206, Al-
buquerque, New Mexico, June 1993. ACM Press.

Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler. Making
the future safe for the past: Adding genericity
to the Java programming language. ACM
SIGPLAN Notices, 33(10):183-200, October
1998.

Thomas H Cormen, Charles E Leiserson, and
Ronald L Rivest. Introduction to Algorithms.
MIT Press, Cambridge, Mass., 1990.

Adele Goldberg and David Robson. Smalltalk-
80: The Language and its Implementation.
Addison-Wesley, 1983.

Urs Holzle. Adaptive optimization for SELF:
Reconciling high performance with exploratory
programming. Thesi CS-TR-94-1520, Stanford
University, Department of Computer Science,

August 1994.

Urs Holzle and David Ungar. Do object-oriented
languages need special hardware support? In
Walter G. Olthoff, editor, ECOOP’95—0Object-
Oriented Programming, 9th FEuropean Confer-
ence, volume 952 of Lecture Notes in Computer
Science, pages 283-302, Aarhus, Denmark, 7-
11 August 1995. Springer.

Java core reflection, jdk 1.1. Sun Microsystems,
Inc., http://java.sun.com.

Richard Jones and Rafael Lins. Garbage Collec-
tion: Algorithms for Automatic Dynamic Mem-
ory Management. John Wiley and Sons, July
1996.

Sheng Liang and Gilad Bracha. Dynamic class
loading in the Java Virtual Machine. ACM SIG-
PLAN Notices, 33(10):36-44, October 1998.

Tian F. Lim, Przemyslaw Pardyak, and Brian N.
Bershad. A memory-efficient real-time non-
copying garbage collector. In Richard Jones, ed-
itor, Proceedings of the Fuirst International Sym-
postum on Memory Management, pages 118-

129, Vancouver, October 1998. ACM Press.

Andrew C. Myers, Joseph A. Bank, and Bar-
bara Liskov. Parameterized types for Java.
In Conference Record of POPL 97: The 24th
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 132—
145, Paris, France, 1517 January 1997.

J. Gregory Morrisett. Compiling with Types.
PhD thesis, School of Computer Science,
Carnegie-Mellon University, December 1995.

[OW97]

[POPY4]

[Rep93]

[SA9S]

[Tof9g]

[TT94]

[TT97]

[Ung84]

Published as CMU Technical Report CMU-CS-
95-226.

Martin Odersky and Philip Wadler. Pizza into
Java: Translating theory into practice. In
Conference Record of POPL °'97: The 24th
ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 146—
159, Paris, France, 1517 January 1997.

Conference Record of the Twenty-first Annual
ACM Symposium on Principles of Programming
Languages, SIGPLAN Notices. ACM Press, Jan-
uary 1994.

John H. Reppy. A high-performance garbage
collector for Standard ML. Technical memoran-
dum, AT&T Bell Laboratories, Murray Hill, NJ,
December 1993.

Jose H Solorzano and Suad Alagie. Paramet-
ric polymorphism for java: A reflective solution.

ACM SIGPLAN Notices, 33(10):201-215, Octo-
ber 1998.

Mads Tofte. A brief introduction to Regions. In
Richard Jones, editor, Proceedings of the First
International Symposium on Memory Manage-
ment, pages 186-195, Vancouver, October 1998.
ACM Press. ISMM is the successor to the
IWMM series of workshops.

Mads Tofte and Jean-Pierre Talpin. A the-
ory of stack allocation in polymorphically typed
languages. Technical Report Computer Science
93/15, University of Copenhagen, July 1994.

Mads Tofte and Jean-Pierre Talpin. Region-
based memory management. Information and

Computation, February 1997. An earlier version
of this was presented at [POP94].

David M. Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation
algorithm. SIGPLAN Notices, 19(5):157-167,
April 1984.

