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Abstract
TM implementations typically use low-level conflict detec-
tion based on the memory locations that a transaction ac-
cesses. This can cause transactions to be re-executed because
of benign conflicts, for example if two transactions insert
items into the same hashtable under different keys which
happen to hash to the same bucket: the insertions update the
same memory locations, even though the higher-level oper-
ations they are performing are commutative.

In this paper we introduceabstract nested transactions
(ANTs) as a way of improving the scalability of atomic
blocks that experience some kinds of benign conflict. The
main idea is that ANTs should contain operations that are
likely to be the victims of benign conflicts. The run-time
system then performs extra book-keeping so that, if an ANT
does experience a conflict, the ANT can be re-executed with-
out needing to re-run the larger transaction that contains it.
Unlike closed nested transactions (CNTs) this re-execution
can happenafter the ANT has finished running – in our im-
plementation we only re-execute ANTs at the point that we
try to commit a top-level atomic block.

Moving code into or out of an ANT issemantics preserv-
ing: ANTs affect only the program’s performance, not its
possible results. This helps open the door for future research
in automatic ways to place ANTs in programs in order to
deal with contention ‘hot spots’ that they experience.

1. Introduction
Atomic blocks provide a promising simplification to the
problem of writing concurrent programs. A code block is
markedatomic and the compiler and run-time system are
responsible for ensuring atomicity during its execution. The
programmer no longer needs to worry about manual locking,
low-level race conditions or deadlocks.

Atomic blocks are typically implemented overtransac-
tional memorywhich provides the abstraction of memory
read and write operations which can be grouped together to
form a transaction and then committed to the heap as a sin-
gle atomic step. Rajwar and Larus’ recent book summarizes
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atomic { // Tx-1 atomic { // Tx-2
performWork(g_o1); performWork(g_o2);

} }

void performWork(Object o) {
g_invocation_count ++;
// Work on ’o’

}

(a) An ordinary implementation ofperformWork
introduces conflicts via the global invocation counter.

void performWork(Object o) {
ant {
g_invocation_count ++;

}
// Work on ’o’

}

(b) RewritingperformWork to use an ANT causes the
higher-level update operation to be logged, rather than the

low level reads and writes it performs.

Figure 1. A benign conflict betweenTx-1 andTx-2.

many of the hardware, software, and hybrid implementation
techniques being explored [10].

In this paper we highlight a number of ways that the
performance of programs can suffer when based on TM.
This happens due tobenign conflictsthat can occur between
transactions. In each of these cases the TM implementation
can force one or more transactions to abort because it detects
a conflict which does not really matter to the application.

Figure 1(a) shows a running example that we will use.
We use a ‘g_’ prefix on variable names to indicate that
they are shared between threads. Other variables are thread-
private. The example involves two transactions,Tx-1 and
Tx-2, which call ‘performWork’ on different objects. The
function increments a count of the number of times that it has
been called and then performs some work on the object that
it has been passed. The updates to the shared counter will
causeTx-1 andTx-2 to conflict with one another, leading to
the re-execution of a wholeatomic block even if the bulk of
performWork is non-conflicting.

1 TRANSACT 2007



Figure 2. Execution time of an atomic section with ANT
(top) and same atomic section without ANT (bottom).

We introduce a fuller taxonomy for different variants of
this problem in Section 2. As we discuss with the taxonomy,
there are several ways that programmers can try to avoid
problems from benign conflicts. In some cases it is possible
to restructure code, to useopen nested transactions[13], or
to use TM-specific optimization interfaces to avoid benign
conflicts. All of these approaches have their problems: man-
ually restructuring code can harm the composability benefits
of atomic blocks, open nested transactions provide a power-
ful general purpose abstraction but one which relies on pro-
grammer care for correct usage, and TM-specific optimiza-
tion interfaces are hard to use correctly.

In this paper we introduce a new approach to avoid re-
executing wholeatomic blocks on some kinds of benign
conflict. The idea, which we callabstract nested transac-
tions (ANTs), is to identify operations that are likely to be
the ‘victims’ of benign conflicts. This lets the TM imple-
mentation keep a separate log of the operations being per-
formed by ANTs and, in the event of a low-level conflict,
just re-execute the ANTs rather than re-executing the larger
transaction containing them. Figure 1(b) shows our example
using an ANT to increment the counter.

Figure 2 shows why this can be faster: assuming that the
ANT forms a small part of the overall execution time of an
atomic block, it reduces the amount of work on a conflict.

We discuss the syntax and semantics of ANTs in Sec-
tion 3. A fundamental design principle we took is that they
aresemantically transparent: marking a block of code as an
ANT does not affect the possible results of a program. Our
motivation in doing this is that it makes ANTs easier to use
and, although we show them being used manually in this pa-
per, in future work they could be placed automatically based
on run-time feedback.

This principle guides many aspects of the design and
implementation of ANTs: what happens if an ANT conflicts
with a transaction that encloses it? What happens if an ANT
raises an exception or tries to block usingretry [5]? What
happens if an ANT behaves one way on its first execution
and then behaves differently if it is re-executed? We discuss
these questions in Section 3.

We have prototyped our implementation of ANTs using
STM Haskell [5]. In Sections 4-5 we describe the details
of this implementation and evaluate the performance impact
of using ANTs. Unlike much of our earlier work on STM

Haskell supporting ANTs is actuallymore difficultin Haskell
than it would be in other languages.

In particular, we make the following contributions:

• An initial taxonomy ofbenign conflictsthat can occur
between atomic blocks.

• The idea ofabstract nested transactionsas a way of
making the performance of atomic blocks more robust
to the presence of some kinds of benign conflict.

• An implementation of ANTs in which they are seman-
tically transparent, being able to be placed around any
transactional code and affecting only its performance.

• Specific to our Haskell-based prototype, we describe a
new mechanism for comparing possibly-non-terminating
computations using lazy evaluation.

Throughout the paper we assume an implementation over
an STM usinglazy conflict detection[12] (that is, detect-
ing conflicts at commit-time in short-running transactions,
and periodically in long-running transactions) andlazy ver-
sioning[12] (that is, recording tentative updates privately for
each transaction, and writing them to the heap upon success-
ful commit).

2. Benign conflicts
In this section we identify a number of different kinds ofbe-
nign conflict that can cause a transaction to abort because
of the low-level at which conflicts are typically detected in
TM implementations. This is an intentionally imprecise def-
inition; as we illustrate, whether or not a given conflict is
benign depends on the context in which the transaction ex-
periencing it occurs. However, distinguishing different kinds
of benign conflict helps us identify the cases where ANTs
are useful and the cases where they are not.

We focus solely onatomic blocks with serializable se-
mantics. As the database community has explored, weaker
isolation levels can reduce conflicts [1]. However weaker
isolation also means that it is no longer possible to reason
aboutatomic blocks as executing in isolation from one an-
other; it is unclear whether this would be acceptable as part
of a mainstream programming model.

2.1 Shared temporary variables

The first kind of benign conflict occurs when global vari-
ables are used for transaction-local storage. Figure 3 shows
an example: each transaction starts by writing tog_temp and
then using it for its own temporary storage. We have seen
this in practice when using thexlisp interpreter on Bartok-
STM [7] and also in the red-black tree implementation that
Fraser used in his PhD work [4] in which transactions work-
ing near the leaves of the tree will write and then read values
in a sentinel node[3] whose contents do not need to be re-
tained between operations on the tree.
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atomic { // Tx-1 atomic { // Tx-2
workOn(g_o1); workOn(g_o2);

} }

void workOn(Object o) {
g_temp = o;
// Work on ’g_temp’

}

Figure 3. Shared temporary variables.TransactionsTx-1
andTx-2 will conflict because they both write tog_temp,
even though neither depends on the values written by the
other.

atomic { // Tx-1 atomic { // Tx-2
g_obj.x ++; g_obj.y ++;
// Private work // Private work

} }

Figure 4. False sharing.TransactionsTx-1 andTx-2 will
conflict using the Bartok-STM implementation which de-
tects conflicts on a per-object basis.

Fraser provides a mechanism for disabling conflict detec-
tion on such data [4]; if this is mis-used then transactions
may no longer be serializable.

Haskell-STM identifies the special case oftransactionally-
silent storesin which a transaction makes a series of updates
to a shared field, but the value at the end of the transaction is
the same as at the start: the overall access can then be treated
as a read rather than a write. This can increase scalability in
some cases. However, not all shared temporaries are used in
this way.

2.2 False sharing

False sharing occurs when the granularity at which TM
detects conflicts is coarser than the granularity at which
atomic blocks access data.

Figure 4 illustrates this with an example pair of transac-
tions that conflict when run over the Bartok-STM implemen-
tation [7]: the two transactions conflict because they both
write to fields in the same object. False sharing can also oc-
cur in HTMs – for example if conflicts are detected on a per-
cache-line basis and two transactions update different words
on the same cache-line. Zilles and Rajwar analyze the prob-
lem of false sharing in TM implementations that use tag-
less ownership tables, showing that it may happen more fre-
quently than intuition suggests [15].

In software, false sharing can be avoided by splitting ob-
jects into portions that are likely to be accessed separately
– the ability to do this is one motivation for detecting con-
flicts at an object-granularity because it lets the programmer
control conflicts when deciding which fields to place in the
same object.

atomic { // Tx-1 atomic { // Tx-2
o1 = remove(g_ht, 39); o2 = remove(g_ht, 49);
// Work on ’o1’ // Work on ’o2’
insert(g_ht, 39, o1); insert(g_ht, 49, o2);
} }

Figure 5. Using commutative operations with low-level
conflicts. TransactionsTx-1 andTX-2 work on objects that
they look up from hashtableg_ht under different keys. The
hashtable operations may introduce conflicts if the keys hash
to the same bucket in the table.

2.3 Using commutative operations with low-level
conflicts

A further source of benign conflicts occurs when transac-
tions use commutative operations that introduce low-level
conflicts. When we say that operationsA andB on a shared
object are commutative we mean that there is no difference
in executingA-before-B or B-before-A in terms of the opera-
tions’ results or the subsequent behavior of the shared object.

One example is the shared counter from Figure 1(a):
the increment operations are commutative, but the read and
writes that they perform are not.

Another example of this kind of benign conflict is lazy
initialization: a data item may have its value computed on-
demand by the first transaction to access it. In many cases
the computation can safely be performed more than once
(wasting time, but giving the same results), although in other
cases this is not true (e.g. in implementations of the single-
ton design pattern, where a common shared object is being
instantiated).

Figure 5 shows a more complicated example: two trans-
actions access a shared hashtable (g_ht) and perform op-
erations on different keys. These are likely to conflict in the
memory locations that they access if the keys happen to hash
to the same bucket in the table.

Ni et al. use an example like this to motivate the use
of open-nested transactions(ONTs) [13]. Using ONTs it
is possible to preventTx-1 and Tx-2 from conflicting by
(i) running theremove and insert operations in ONTs
so that they are performed directly to the hashtable when
they are invoked inside transactions, (ii ) defining compen-
sating operations to roll-back any tentative operations that
are made by transactions that subsequently abort, (iii ) using
abstract-locksto prevent concurrent transactions performing
non-commutative operations on the hashtable – for example
insertions under the same key.

Versioned boxes [2] provide mechanisms for dealing with
some kinds of low-level conflcit between commutative oper-
ations:delayed computationsthat execute at commit time,
and restartable transactionsthat perform read-only opera-
tions that can be re-executed at commit time to check for be-
nign conflicts. ONTs provide a more general-purpose mech-
anism to tackle many problems, including this one, but they
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atomic { // Tx-1 atomic { // Tx-2
f = listFind(g_l, 1000); listInsert(g_l, 10);

} }

List listFind(List l, int key) {
while (l.Next.Key <= key) {
l = l.Next;

}
return l;

}

bool listContains(List l, int key) {
l = listFind(l, key);
return (l.Key == key);

}

void listInsert(List l, int key) {
l = listFind(l, key);
if (l.Key != key) {
l.Next = new List(key, l.Next);

}
}

Figure 6. Defining commutative operations with low-
level conflicts.TransactionsTx-1 andTx-2 will conflict in
their accesses to the shared listg_l holding sorted integers:
Tx-1 will traverse the list up to the node holding 1000, and
Tx-2 will conflict with these reads when it inserts a node
holding 10.

rely on programmer care in defining the compensating ac-
tions and abstract locking discipline in order to ensure that
atomic blocks using them remain serializable.

2.4 Defining commutative operations with low-level
conflicts

A further source of benign conflicts occurswithin the defini-
tion of commutative operations. Figure 6 shows an example:
two transactions access a sorted linked list of integers, with
Tx-1 searching the list for an item 1000 andTx-2 inserting
an item 10. If we assume that the list contains many ele-
ments thenTx-1 will build up a large read-set and conflict
with Tx-2 and any other transactions making updates to the
list in the range 1..1000.

ONTs do not provide an obvious solution to this prob-
lem: the atomic blocks consist of a single operation on a list,
which must be performed atomically whether it is in an or-
dinary transaction, or in an open one. However, many STM
implementations have included ‘back doors’ by which ex-
pert programmers can remove accesses from a transaction’s
read-set that they believe are unnecessary [9]. In this case
listFind could be rewritten to retain only its accesses to
nodes in the vicinity of the key: earlier nodes would be re-

while (true) { while (true) {
atomic { // Tx-1 atomic { // Tx-2
t = getAny(g_in); t = getAny(g_in);
if (t == null) break; if (t == null) break;
// Work on t // Work on t
put(g_out, t); put(g_out, t);

} }
} }

Figure 7. Making arbitrary choices deterministically.
TransactionsTx-1 andTx-2 both take work items from an
input input pool (g_in), work on them, and place the results
in an output pool (g_out). A deterministic implementation
of getAny will lead them both to pick the same item.

moved from the read-set and concurrent updates to these
nodes would not be treated as conflicts.

Using these operations correctly requires great care from
the programmer. For example, using them here leads to sim-
ilar search and insert functions to the non-blocking linked
list algorithms by Harris [8] and Michael [11]. Furthermore,
adding an additional operation to a data structure can make
the implementation of existing operations incorrect. For ex-
ample, if we addedlistDeleteFrom implemented by cut-
ting off the tail of a list at a specified element, then it would
no longer be correct to remove elements from the read-set
during a call tolistContains.

2.5 Making arbitrary choices deterministically

A final example of benign conflict is caused bymaking ar-
bitrary choices deterministically. Figure 7 shows an exam-
ple. Two threads repeatedly take items from a pool of input
itemsg_in, work on them, and place them into an output
pool g_out. All of the items must be processed, but it does
not matter what order this happens in.

If we assume that the input pool is implemented by a
shared queue then the two threads’ transactions will conflict
because they will deterministically select the first item from
the queue even though, in this context, any item is accept-
able.

ONTs can be used in this case: each thread executes
getAny in an ONT and uses a compensating action to re-
place the item. There is one subtlety to beware of in this ex-
ample – a transaction observing the queue to be empty can
only be allowed to commit once there is no possibility of a
concurrent call togetAny being compensated.

2.6 Discussion

In this section we have introduced a number of ways in
which programs can experience benign conflicts. There are
a wide range of existing techniques addressing parts of this
problem space:

• Converting shared temporaries into transactionally-silent
stores reduces conflicts using some STM implementa-
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tions (Section 2.1) and restructuring how data is parti-
tioned between objects can reduce false sharing (Sec-
tion 2.2).

• Open nested transactions can be used to avoid serializing
commutative operations (Section 2.3) and avoid making
arbitrary choices deterministically (Section 2.5).

• Manual optimization interfaces can be used to trim un-
necessary reads from transactions read-sets (Section 2.4).

Common to all of these is the use of manual techniques that
introduce a risk of changing the behavior of theatomic
blocks as well as their performance: if they are mis-used
then ONTs and read-set reduction interfaces can lead to non-
serializable executions ofatomic blocks.

Our goal is to explore how far we can go with techniques
without that risk. The ‘abstract nested transactions’ in this
paper are the first step in that direction. In particular, we aim
to tackle the problems of false conflicts (Section 2.2) and
atomic blocks using commutative operations with low-level
conflicts (Section 2.3).

Why do we not tackle the other problems? Essentially be-
cause we believe they are best tackled elsewhere. First, it is
likely that shared temporary variables can be identified auto-
matically by modifications to the TM implementation. Sec-
ond, we believe that scalable implementations of data struc-
tures involving arbitrary choice can be built overatomic
blocks and ANTs using randomization techniques similar to
those in Scherer’s exchanger [14] – in effect, making the op-
erationsnon-deterministicwhere possible. Third, we hope
that some cases of read-set reduction can be made possible
by compile-time analyses. Whether or not these techniques
are effective is the subject of future work.

3. Abstract nested transactions
The key idea with ANTs is to identify operations, like those
in Sections 2.2-2.3, which are likely to be the victims of
benign conflicts when executed over TM. For example, the
hashtable operations in Figure 5 could be executed inside
ANTs, as could the accesses tog_obj.x and g_obj.y in
Figure 4.

We chose the name ANTs because the programmer can
think of them as being handled at a different level of abstrac-
tion from the ordinary reads and writes that a transaction per-
forms. For example, anatomic block that inserts data into a
hashtable within an ANT will only be forced to re-execute if
a concurrent transaction inserts a conflicting item into theta-
ble, rather than (with a typical hashtable implementation)if
a concurrent transaction inserts a value that happens to hash
to the same bucket.

We do this without programmer annotations about which
operations conflict with one another. Instead, we perform ex-
tra book-keeping at run-time which lets us (i) identify benign
conflicts involving ANTs, (ii ) recover from benign conflicts

by just re-executing the ANTs, rather than re-executing the
atomic block that contains them.

The main difficulty, of course, is ensuring that it is correct
to just re-execute the ANTs. We discuss the mechanisms
we use to do this in Section 4 after first discussing the
syntax (Section 3.1) and semantics (Section 3.2) of ANTs,
and programmer guidelines for how to use them to improve
performance (Section 3.3).

3.1 Syntax

The exact way that ANTs are exposed to programmers will
depend on the language. In the psuedo-code example in
Figure 1(b) we suggested usingant blocks. We will use this
concise form for examples in the remainder of the paper,
both as stand-aloneant blocks (ant{X}) and asant blocks
that return a result (Y = ant{X}).

In practice, in a language like C# or Java, it would be
more natural to express ANTs using an attribute on indi-
vidual method signatures, or on a class in which case all
methods on the class would execute in ANTs. That would be
consistent with the expectation that all operations on a given
shared object would be performed through ANTs. Of course,
many other possibilities can be imagined, such as creating
an ANT-wrapper around an existing object, or designating
an object as ANT-wrapped at the point that it is instantiated.

3.2 Semantics

ANTs are semantically transparent. In our pseudo-code, run-
ningant{X} is always equivalent toX, no matter what oper-
ations are performed inX and what context the ANT occurs
in. The same is true for ANTs returning a result.

This is an important decision: it means that the addition
or removal of ANTs is based purely on performance con-
siderations, making it easier to use feedback-directed tools
to identify contention. We did consider whether we could
use a different implementation of ordinaryclosed nested
transactions(CNTs) instead of introducing new notation
for ANTs. However, most languages that expose CNTs via
nestedatomic blocks choose to allow exceptions raised in-
side a CNT to roll-back the nested transaction. This means it
is not possible to add or remove CNTs without considering
semantic changes to the program.

Another important consequence of our design decision
is that anatomic block containing ANTs can always be
executed infallback-modein which the ANTs are executed
without any special run-time support. We use this idea to
simplify our prototype implementation.

3.3 Performance

Our implementation of ANTs is based on re-executing ANTs
that experience conflicts without needing to re-execute the
wholeatomic block that contains them.

For instance, using the hashtable example from Figure 5,
if the two keys hash to the same bucket then the second
transaction to commit can experience conflicts from the
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first. However, if theremove and insert operations are
implemented using ANTs then the second transaction will
abandon its initial execution ofremove and insert and
re-execute just these operations rather than needing to re-
execute the entireatomic block. If the re-execution succeeds
without conflict, if the result returned byremove is the same
upon re-execution, and if this result is the only way that the
ANTs interacted with the outer block, then the atomic block
and the re-executed ANTs can be committed.

It is important for the programmer to understand how to
use ANTs if they are to achieve good performance. The rules
are:

• A given piece of data should be consistently accessed
inside ANTs, or consistently accessed outside ANTs.
Consider the following example:

atomic {
ant { g_temp = remove(g_ht, 39); }
// Work on ’g_temp’

}

In this example the ANT interacts with the rest of the
atomic block throughg_temp, unlike Figure 5 where
the interaction is solely through the return value from the
ANT. We detect this kind of inconsistent use of ANTs at
run-time and switch to fallback-mode.

• ANTs should constitute a small portion of the execution
time of theatomic block that contains them. Otherwise,
there is no practical gain by re-executing just the ANTs.

• ANTs should be likely to experience conflicts whereas
the rest of theatomic block should not. Otherwise, the
whole atomic block is likely to be re-executed in any
case.

4. Prototype implementation
We have implemented support for ANTs in therun time sys-
tem(RTS) of the Glasgow Haskell Compiler (GHC). Aside
from the subtlety discussed in Section 4.3 about detect-
ing equality between Haskell values, the implementation
should be applicable to other languages using similar STM
algorithms. Although STM-Haskell does not expose nested
atomic blocks to the programmer, our implementation of
ANTs doessupport closed nested transactions which are
used internally by the GHC RTS in its implementation of
exception handling and theorElse andretry constructs for
composable blocking [5].

GHC’s existing support for STM uses lazy conflict de-
tection and lazy versioning using transaction logs that keep
track of shared memory accesses. Each transaction’s log is a
list of log entries containing the following fields: themem-
ory addressbeing accessed, theold valuethat the transaction
expects to be stored there and thenew valuethat it wants to
write there. Every read or write to a shared memory loca-
tion is performed first by scanning through the transaction

log and, if the location is not found in the log, the memory
access is performed and a new log entry is created in the log.

The STM implementation allows validation and commit
operations to run in parallel so long as the locations written
to by one transaction do not overlap the locations read or
written to by another [6].

4.1 Changes when executing anatomic block

While executing anatomic block we differentiate between
memory accesses made from within ANTs and those made
from the enclosing transaction. To achieve this, the transac-
tion log keeps entries in two separate lists: one list records
the accesses in the ANTs, and the other list records all the
normal transactional accesses.

The structure of the transaction log (TLog) can be seen on
the Figure 8(a). The TLog has four fields. TLogEntries holds
the normal transactional accesses. ANTLogEntries holds the
accesses made within ANTs. ANTActionEntries records the
high-level operations being performed by ANTs. Each is
represented by a pair of pointers. The first points to the block
of code (closure) that executes the ANT. The second points
to the result that was returned by the closure when the ANT
was first executed. ANTFlag is used to implement fallback-
mode: if the flag is set to True, then ANTs are enabled and
logging is done using the ANTLogEntries list. If the flag is
set to False, then ANTs are disabled and all logging is done
to the TLogEntries list.

We will show, on a small example, how these logs are
used. The following example is written in Java-like pseudo-
code:

1. atomic {
2. a1 = <LARGE COMPUTATION>;
3. r2 = ant { <SMALL COMPUTATION>; }
4. <LARGE COMPUTATION>;
5. r3 = ant { <SMALL COMPUTATION>; }
6. <LARGE COMPUTATION>;
7. }

In Figure 8, we can see the structure of the TLog at dif-
ferent stages during the execution of the atomic block. The
atomic block starts a transaction by creating an empty TLog
(after executing line 1). TLogEntries, ANTLogEntries and
ANTActionEntries are empty in the beginning (Figure 8(a)).
Line 2 modifies variablea1 with a tentative change to the
TLogEntries (Figure 8(b)). In line 3, the ANT uses the ANT-
LogEntries for its tentative update: the ANT modifies vari-
able a2 and the change is logged in the ANTLogEntries.
After the execution of the ANT, the pointer to the ANT’s
code and its result are saved in the ANTActionEntries (Fig-
ure 8(c)). Line 4 reverts to using TLogEntries for logging.
In the example case, no access to the other transaction vari-
ables occured. The ANT in the line 5 changes the variable
a3 and uses the same the ANTLogEntries slot that was used
by the ANT in line 3. The return value and the closure are
once again saved in ANTActionEntries.
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(a) A transaction starts with an empty transaction log.

(b) The transaction writes addressa1.

(c) The first ANT finishes, having made updates to address
ant_a2 and returned resultr2.

(d) The second ANT finishes.

Figure 8. Transaction execution with ANTs enabled.

4.2 Changes when committing anatomic block

Ordinarily, at the end of anatomic block, the GHC RTS
implementation of STM validates the transaction log and

a) Transaction re-executes

b) Re-executed transaction finishes

Figure 9. Transaction re-execution with ANTs disabled
(ANTFlag set to False).

commits the updates to memory. The following algorithm
explains how we modify the commit phase of a transaction:

start:
case validate(TLog):
OK : commit TLog
ANTLogEntries and TLogEntries intersect:
set ANTFlag = False
restart transaction

ANTLogEntries invalid, TLogEntries valid:
re-execute ANTActionEntries
goto start

TLogEntries invalid:
restart transaction

This algorithm starts by validating the entire TLog, compris-
ing the entries in TLogEntries and ANTLogEntries. There
are four cases to consider:

1. TLogEntries and ANTLogEntries are all valid.This
means that there have been no conflicts at all: not with
the ANTs or with the remainder of theatomic block. In
this case we commit all the log entries to memory.

2. TLogEntries and ANTLogEntries intersect.This occurs
when a program uses the same transactional variable
in the ANT and outside of it. The whole atomic block
has to be re-executed with the ANTFlag set to False,
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Figure 10. Transaction about to re-execute ANTs.

disabling ANT usage. There is no scalability gained from
the ANTs, but the semantics of the atomic section are
preserved.

Figure 9 shows what happens in our example. The trans-
action is restarted (Figure 9(a)) and builds up a single log
during its re-execution (Figure 9(b)).

3. ANTLogEntries are invalid and TLogEntries are valid.
This shows that there has been a conflicting memory
access on one or more of the ANTs. This is the case
when we can re-execute all the closures that are in the
ANTActionEntries. After re-execution of every closure,
the new return values from the closures are compared
with the return values of the previous execution. If all
the values are thesame(implementation of equality is
explained in Section 4.3), we know that any computation
in the atomic block that depends on the those values will
be unaffected by the re-execution of the closures. If any
of the return values has changed then the atomic block
has to be re-executed.

Figure 10 shows what happens in our example. The ANT-
LogEntries structure is emptied and each ANT from the
ANTActionEntries is re-executed in turn. After success-
ful re-execution of these closures the TLog will once
again look as shown on Figure 8(d).

4. TLogEntries are invalid.In this case there has been a
conflict with the main transaction: we must re-execute
the wholeatomic block.

4.3 Implementing equality in RTS

There is a subtle problem in how we implement the equality
test between different executions of an ANT. There are two
factors to consider. First, for safety, we must err on the side
of caution: two results can be claimed distinct when in fact
they are equivalent. Second, our design principle that ANTs
are semantically transparent means that the implementation
of the equality test must not change the semantics of the
atomic block. This means that we cannot generally use
programmer-supplied equality tests unless we wish to trust
these to be correct: in C# or Java terminology we would use
‘==’ rather than ‘.Equals’.

However, working in Haskell raises another problem: the
language uses lazy evaluation and so the result from an ANT
may be returned as an un-evaluated closure rather than as a
result which can be compared. We cannot simply evaluate
the closure in case it is a non-terminating computation that
is not needed by the program.

In practice we have not seen closures occurring in this
way and so our prototype conservatively uses (i) pointer
equality between objects with identity (e.g. mutable vari-
ables whose addresses can be compared), (ii ) a shallow
comparison function between objects without identity (e.g.
boxed integer values). However, in a full implementation we
could perform equality tests between a first resultR1 and a
second resultR2 as follows:

• If R1 and R2 are both objects with identity then use
pointer equality.

• If R1 andR2 are both objects without identity then recur-
sively compare their constructor tags and fields.

• If R1 has been evaluated butR2 has not, then evaluate
R2 and repeat the comparison. This deals with the case
where theatomic block has forcedR1 to be evaluated
and may therefore depend on its result. IfR2 does not
complete evaluation promptly then abandon it and re-
execute the atomic block in fallback-mode.

• If R1 has not been evaluatedthen R1 and R2 can be
treated as equal. The key insight is that ifR1 was not
evaluated then theatomic block cannot depend on the
(still-unknown) value it may yield.

However, there is one further caveat in this case: the
atomic block may itself returnR1 or store it into shared
memory when it commits. In this case we must replace
R1 with R2 so that, if it is ever evaluated, the commit-
time resultR2 is obtained. This can be done in the GHC
RTS by atomically overwritingR1 with an indirection
to R2. Our earlier paper provides an introduction to the
management of closures, indirections, and so on in the
RTS [6].

• In other cases treatR1 andR2 as distinct.

5. Results
To explore the performance of ANTs we used a synthetic
test program with the following structure:

atomic {
v = ant { <SMALL COMPUTATION>; } // A1
<LARGE COMPUTATION>; // L1
ant { <SMALL COMPUTATION>; } // A2

}

Our test lets us vary the amount of time spent inside the
ANTs by varying the amount of work performed in the
large computationL1. As we discussed in Section 3.3, ANTs
should be used for small parts of the transaction the are likely
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to conflict with other transactions and so we need to quantify
what this means.

In our test program the ANTA1 removes an item from
a shared list of key-value pairs andA2 returns an item to
the head of the list. Each thread works on disjoint keys:
concurrent invocations will always conflict in their reads
and writes to the list, but the operations themselves are
commutative. For the<LAGRE COMPUTATION>, we uses a
simple function performing a private loop of fixed duration.
We vary the number of threads operating on the list and the
ratio of the large computation’s execution time to the ANTs’.

Our test machine ran Windows Server 2003, with 2 quad-
core CPUs (in total 8 cores) and 4GB of RAM. All the tests
were compiled with optimizations and ran with GHC’s heap
configured to 512MB of heap so that garbage collection did
not play any role in the execution times.

Figure 11, shows the execution time of the test program
with 4-thread and 8-thread runs as the size of the large com-
putation is varied. The graph compares the performance of
the test using ANTs (‘AN Transaction’) against the perfor-
mance with ANTs disabled (‘Regular Transaction’). The x-
axis shows the ‘relative workload’ which is the fraction of
execution time spentoutsideANTs.

As we discussed in Section 3.3 we would expect this to
be high in the intended uses of ANTs. The implementation
using ANTs out-performs the existing implementation when
ANTs account for 70% or more of the execution time. The
reason for this is that the re-execution time of regular trans-
action is larger than re-execution time of the transaction with
ANTs; the regular transaction has to re-execute the whole
atomic section, and on the other hand, the transaction with
ANTs has to re-execute just ANTs. Of course, by making the
size of the ANTs increasingly small, the performance differ-
ence could be made arbitrarily good. However, the important
result is to understand the kind of range below which ANTs
are ineffective.

Conversely, when most time is spentoutsideANTs, we
can see that ANTs slow down the program; for smallatomic
sections, the slowdown can be around 2x. This is because
most of the execution time of the transaction is spent in
stmCommitTransaction() and our prototype effectively
introduces two passes over the log entries; one to distinguish
the 4 cases in Section 4.2 and another to actually commit the
changes to memory. In principle these operations could be
combined.

In Figure 12 we compare the performance of our test pro-
gram using ANTs with the same test program using ONTs
in the case where around 8% of time is spent inside the
ANTs. Both ANTs and ONTs improve scalability compared
with executing all the operations in a single transaction. One
would expect ONTs to out-perform ANTs in this workload:
no compensating actions are run and so the work performed
by ONTs is strictly less than ANTs. This is true aside from
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Figure 12. Execution times of regular transactions, ANTs
and ONTs.

some jitter when running with 2 threads; we are not yet sure
what causes this anomaly.

6. Conclusion
This paper has introduced the idea ofabstract nested trans-
actions(ANTs) for identifying sections of anatomic block
that are likely to be the victims of benign conflicts. By
re-executing ANTs we can avoid re-executing the whole
atomic block that contains them. Unlike other techniques
for improving the scalability ofatomic blocks ANTs are
semantically transparent and can be used as a performance-
tuning technique without risk of changing the semantics or
serializability of the code in which they are used.

This is not to say that they provide a replacement for
other abstractions such as low-level unsafe optimization in-
terfaces or open nested transactions. However, the unique
features of ANTs open the possibility for completely auto-
matic feedback-directed optimization of transactional pro-
grams to try to identify contention hot-spots.

We are currently evaluating ANTs in a number of larger
STM-Haskell programs, reducing the overhead introduced
by their implementation, and expanding the number of cases
that can be handled without using fallback-mode. In par-
ticular, the test for non-intersection between the logs cur-
rently imposes extra work at commit time and excludes uses
of ANTs where results pass from an ANT to the enclos-
ing atomic block through shared variables. We are trying to
address both of these issues. First, information about over-
laps between the logs can be maintained during a transac-
tion’s execution (possibly switching to fallback mode ea-
gerly, without re-execution, if an overlap occurs). Second,
we believe that overlaps can be tolerated in cases where in-
formation flows from ANTs to the enclosing atomic block:
we can identify these ‘key outputs’ and, on re-execution,
subject them to the same test that we currently use for the
ANTs’ return values.
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