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ABSTRACT
Many researchers have developed applications using transactional
memory (TM) with the purpose of benchmarking different imple-
mentations, and studying whether or not TM is easy to use. How-
ever, comparatively little has been done to provide general-purpose
tools for profiling and tuning programs which use transactions.

In this paper we introduce a series of profiling techniques for
TM applications that provide in-depth and comprehensive infor-
mation about the wasted work caused by aborting transactions. We
explore three directions: (i) techniques to identify multiple poten-
tial conflicts from a single program run, (ii ) techniques to identify
the data structures involved in conflicts by using a symbolic path
through the heap, rather than a machine address, and (iii ) visual-
ization techniques to summarize how threads spend their time and
which of their transactions conflict most frequently.

To examine the effectiveness of the profiling techniques, we pro-
vide a series of illustrations from the STAMP TM benchmark suite
and from the synthetic WormBench workload. We show how to use
our profiling techniques to optimize the performance of the Bayes,
Labyrinth and Intruder applications.

We discuss the design and implementation of our techniques in
the Bartok-STM system. We process data offline or during garbage
collection, where possible, in order to minimize the probe effect
introduced by profiling.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: [Parallel programming]; D.2.8
[Software Engineering]: Metrics—Performance measures; C.4
[Performance of Systems]: [Measurement techniques]

General Terms
Performance, Measurement
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1. INTRODUCTION
Transactional Memory (TM) is a concurrency control mechanism
which allows a thread to perform a series of memory accesses as
a single atomic operation [14]. This avoids the need for the pro-
grammer to design fine-grained concurrency control mechanisms
for shared-memory data structures. Typical implementations of TM
execute transactions optimistically, detecting any conflicts which
occur between concurrent transactions, and aborting one or other
of the transactions involved [11].

However, if a program is to perform well, then the programmer
needs to understand which transactions are likely to conflict and to
adapt their program to minimize this [2]. Several studies report that
the initial versions of transactional applications can have very high
abort rates [9, 18, 20]—anecdotally, programmers tend to focus
on the correctness of the application by defining large transactions
without appreciating the performance impact.

Various ad hoc techniques have been developed to investigate
performance problems caused by TM. These techniques are typi-
cally based on adding special kinds of debugging code which ex-
ecute non-transactionally, even when they are called from inside
a transaction. This non-transactional debugging allows a program
to record statistics about, for example, the number of times that a
given transaction is attempted.

In this paper we describe a series of methodical profiling tech-
niques which aim to provide a way for a programmer to exam-
ine and correct performance problems of transactional applications.
We focus, in particular, on performance problems caused by con-
flicts between transactions: conflicts are a problem for all TM sys-
tems, irrespective of whether the TM is implemented in hardware
or software, or exactly which conflict detection mechanisms it uses.

We introduce our profiling techniques in Section 2. We follow
two main principles. First, we want to report all results to the pro-
grammer in terms of constructs present in the source code (e.g., if
an objectX in the heap is subject to a conflict, then we should de-
scribeX in a way that is meaningful to the programmer, rather than
simply reporting the object’s address). Second, we want to keep the
probe effect of using the profiler as low as we can: we do not want
to introduce or mask conflicts by enabling or disabling profiling.

We identify three main techniques for profiling TM applications.
The first technique identifies multiple conflicts from a single pro-
gram run and associates each conflict with contextual information.
The contextual information is necessary to relate the wasted work
to parts of the program as well as constructing the winner and vic-
tim relationship between the transactions. The second technique
identifies the data structures involved in conflicts, and it associates



the contended objects with the different places where conflicting
accesses occur. The third technique visualizes the progress of trans-
actions and summarizes which transactions conflict most. This is
particularly useful when first trying to understand a transactional
workload and to identify the bottlenecks that are present.

Our profiling framework is based on the Bartok-STM system [12]
(Section 3). Bartok is an ahead-of-time C# compiler which has
language-level support for TM. Where possible, the implementa-
tion of our profiling techniques aims to combine work with the op-
eration of the C# garbage collector (GC). This helps us reduce the
probe effect because the GC already involves synchronization be-
tween program threads, and drastically affects the contents of the
processors’ caches; it therefore masks the additional work added
by the profiler. Although we focus on Bartok-STM, we hope that
the data collected during profiling is readily available in other TM
systems.

In Section 4 we present a series of case studies to illustrate the
use of our profiling techniques. We describe how we ported a series
of TM programs from C to C#. Initially, three of these applications
did not scale well after porting (Bayes, Labyrinth and Intruder from
the STAMP suite [3]). Profiling revealed that our version of Bayes
experienced false conflicts due to Bartok-STM’s object-level con-
flict detection; it scaled well after modifying the data structures
involved. Labyrinth did not scale well because the compiler instru-
mented calls to the STM library for all memory accesses inside the
program’satomic blocks. In contrast, the C version performed
many of these memory accesses without using the STM library.
We were able to achieve good scalability in the C# version by us-
ing early releaseto exclude the safe memory accesses from conflict
detection. The authors of the STAMP benchmark suite report that
Intruder scales well on HTM systems but does not scale well on
some STMs. Indeed, initially, Intruder scaled very badly when us-
ing Bartok-STM. However, after replacing a contended red-black
tree with a hashtable, and rearranging a series of operations, we
achieved scalability comparable to that of HTM implementations.
We also verified that our modified version of Intruder continued to
scale well on other STMs and HTMs. These results illustrate how
achieving scalability across the full range of current TM implemen-
tations can be extremely difficult.

Aside from these example, the remaining workloads we studied
performed well and we found no further opportunities for reducing
their conflict rates.

Finally, we discuss related work in Section 5 and conclude in
Section 6.

2. PROFILING TECHNIQUES
As with any other application, factors such as compiler optimiza-
tions, the operating system, memory manager, cache size, etc. will
effect on the performance of programs using TM. However in addi-
tion to these factors, performance of transactional applications also
depends on (i) the performance of the TM system itself (e.g., the
efficiency of the data structures that the TM uses for managing the
transactions’ read-sets and write-sets), and (ii ) the way in which
the program is using transactions (e.g., whether or not there are
frequent conflicts between concurrent transactions).

Figure 1 provides a contrived example to illustrate the difference
between TM-implementation problems and program-specific prob-
lems. The code in the example executes transactional tasks (line 4)
and, depending on the task’s result, it updates elements of the array
x. This code would execute slowly in TM systems using naïve im-
plementations of lazy version management: every iteration of the
for loop would require the TM system to search its write set for
the current value of variabletaskResult (lines 6 and 8). This

int taskResult = 0;

1: while (!taskQueue.IsEmpty) {
2: atomic {
3: Task task = taskQueue.Pop();
4: taskResult = task.Execute();
5: for (int i < 0; i < n; i++) {
6: if (x[i] < taskResult) {
7: x[i]++;
8: } else if (x[i] > taskResult) {
9: x[i]--;

10: }
11: }
12: }
13: }

Figure 1: An example loop that atomically executes a task and
updates array elements based on the task’s result.

would be an example of a TM-implementation problem (and, of
course, many implementations exist that support lazy version man-
agement without naïve searching [11]). On the other hand, if the
programmer had placed thewhile loop inside theatomic block,
then the program’s abort rate would increase regardless of the TM
implementation. This would be an example of a program-specific
problem.

Our paper focuses on this second kind of problem. The rationale
behind this is that reducing conflicts is useful no matter what kind
of TM implementation is in use; optimizing the program for a spe-
cific TM implementation may give additional performance benefits
on that system, but the program might no longer perform as well
on other TM systems.

In this section we describe our profiling techniques for transac-
tional memory applications. We follow two main principles. First,
we report the results at the source code language such as variable
names instead of memory addresses or source lines instead of in-
struction addresses. Results presented in terms of structures in the
source code are more meaningful as they convey semantic infor-
mation relevant to the problem and the algorithm. Second, we want
to reduce the probe effect introduced by profiling, and to present
results that reflect the program characteristics and are independent
from the underlying TM system. For this purpose, we exclude the
operation time of the TM system (e.g., roll-back time) from the re-
ported results.

2.1 Conflict Point Discovery
In an earlier paper we introduced a “conflict point discovery” tech-
nique that identifies the first program statements involved in a con-
flict [29]. However, after using this technique to profile applica-
tions from STAMP, we identified two limitations: (i) it does not
provide enough contextual information about the conflicts and (ii )
it accounts only for the first conflict that is found because one or
other of the transactions involved is then rolled back. In this paper
we refer to our earlier approach asbasicconflict point discovery.

In small applications and micro-benchmarks most of the execu-
tion occurs in one function, or even in just a few lines. For such
applications, identifying the statements involved in conflicts would
be sufficient to find and understand the TM bottlenecks. However,
in larger applications with more complicated control flow, the lack
of contextual information means that basic conflict point discov-
ery would only highlight the symptoms of a performance problem
without illuminating the underlying causes.

For example, in Figure 2 the two different calls to functionpro-
bability atomically increment a shared counter by calling the



increment() { probability(int rate) { // Thread 1 // Thread 2
counter++; rnd = random() % 100; for (int i < 0; i < 100; i++) { for (int i < 0; i < 100; i++) {

} if (rnd <= rate) { probability(80); probability(80);
atomic { probability(20); probability(20);

increment(); } }
}

}
}

Figure 2: In this example code two threads call functions which increment a shared counter with different probabilities. Basic
conflict point discovery will only report that the conflicts happen in increment. However, without knowing which function calls
increment most, the user cannot find and optimize the sequence of function calls where most time is wasted. In this example the
important calls would be via probability(80) to increment.

// Thread 1 // Thread 2
1: atomic { atomic {
2: obj1.x = t1; ...
3: obj2.x = t2; ...
4: obj3.x = t3; ...
5: ... obj1.x = t1;
6: ... obj2.x = t2;
7: ... obj3.x = t3;
8: } }

Figure 3: Basic conflict point discovery would only display the
first statements where conflicts happen. On the given exam-
ples these statements are line 2 for Thread 1 and line 5 for
Thread 2. However, the remaining statements are also conflict-
ing and most likely revealed on the subsequent profiles.

functionincrement with a probability of 80% and 20%. When
probability(80) andprobability(20) are called in a
loop by two different threads, basic conflict point discovery will
report that all conflicts happen inside the functionincrement.
But this information alone is not sufficient to reduce conflicts be-
cause the user would need to distinguish between the different stack
back-traces that the conflicts are part of. In this case, the calls in-
volving probability(80) should be identified as more prob-
lematic than those going throughprobability(20). Similarly,
for other transactional applications, the reasons for the poor per-
formance would most likely be for using, for example, inefficient
parallel algorithms, using unnecessarily largeatomic blocks, or
using inappropriate data structures which allow low degrees of con-
current usage.

The second disadvantage of basic conflict point discovery is that
it only identifies the first conflict that a transaction encounters. It is
possible that two transactions might conflict on a series of memory
locations and so, if we account for only the first conflict, the profil-
ing results will be incomplete. As a consequence, the user will not
be able to properly optimize the application and most likely will
need to repeat the profiling several times until all the omitted con-
flicts are revealed. The programmer can end up needing to “chase”
a conflict down through their code, needing repeated profile-edit-
compile steps. Figure 3 provides an example: basic conflict point
discovery would only identify the conflicts onobj1 (line 2 for
Thread 1 and line 5 for Thread 2). However, the remaining state-
ments are also conflicting and most likely will be revealed by sub-
sequent profiles once the user has eliminated the initial conflicting
statements.

We address the described limitations namely by providing con-
textual information about the conflicts and accounting for all con-
flicting memory accesses within aborted transactions.

The contextual information comprises theatomic block where
the conflict happens and the call stack at the moment when the

conflict happens. It is displayed via two views: top-down and
bottom-up (Figure 4). In both cases, each node in the tree refers
to a function in the source code. However, in the top-down view,
a node’s path to the root indicates the call-stack when the func-
tion was invoked, and a node’s children indicate the other functions
that it calls. The leaf nodes indicate the functions where conflicts
happen. Consequently, a function called from multiple places will
have multiple parent nodes. Conversely, in the bottom-up view, a
root node indicates a function where a conflict happens and its chil-
dren nodes indicate its caller functions. Consequently, a function
called from multiple places will have multiple child nodes. Further-
more, to help the programmer find the most time-consuming stack
traces in the program, each node includes a count of the fraction of
wasted work that the node (and its children) are responsible for.

To find all conflicting objects in an aborting transaction, we sim-
ply continue checking the remaining read set entries for conflicts.
In the rare case, when the other transactions that are involved in
a conflict are still running, we force them to abort and re-execute
each transaction serially. This way we collect the complete read
and write sets of the conflicting transactions. By intersecting the
read and write sets, we obtain the potentially conflicting objects.
Unlike basic conflict point discovery, our approach will report that
all statements in the code fragment from Figure 3 are conflicts. Our
profiling tool displays the relevant information about the conflicting
statements and conflicting objects in the bottom-up view (Figure 4)
and the per-object view respectively (Figure 6).

Besides identifying conflicting locations, it is important to de-
termine which of them have the greatest impact on the program’s
performance. The next section introduces the performance metrics
which we use to do this, along with how we compute them.

2.2 Quantifying the Importance of Aborts
The profiling results should draw the user’s attention to theatomic
blocks whose aborts cause the most significant performance im-
pact. As in basic conflict point discovery, a naïve approach to
quantify the effect of aborted transactions would only count how
many times a givenatomic block has aborted. In this case results
will wrongly suggest that a smallatomic block which only incre-
ments a shared counter and aborts 10 times is more important than
a largeatomic block which performs many complicated compu-
tations but aborts 9 times. To properly distinguish between such
atomic blocks we have used different metric calledWastedWork.
WastedWork counts the time spent in speculative execution which
is discarded on abort.

Besides quantifying the amount of lost performance, it is equally
important that the profiling results surface the possible reasons for
the aborts. For example, the Bayes application has 15 separate
atomic blocks, one of which aborts much more frequently than
the others (FindBestInsertTask). The WastedWork metric
will tell us at whichatomic block the performance is lost, but



Figure 4: On the left is top-down tree view and on the right
bottom-up tree view obtained from the 4-threaded execution
of non-optimized Intruder application. The top-down view
(left) shows that almost 100% (82.6%+17.4% summed from
the two trees) of the total wasted work is accumulated at func-
tion ProcessPackets. The bottom-up view (right) shows
that 64.5% of the total wasted work is attributed to func-
tion ProcessPackets, and 27.2% to functionQueue.Push
which is called from ProcessPackets and the rest to other
functions. The non-translated addresses are internal library
calls. Because of different execution paths that follow from
the main program thread and the worker threads the top-down
view draws 2 trees instead of 1.

to reduce the number of aborts the user will also need to find the
atomic blocks which causeFindBestInsertTask to abort.
To mitigate this, we have introduced an additional metricCon-
flictWin. ConflictWin counts how many times a given transaction
wins a conflict with respect to another transaction which aborts.

Using the information from the WastedWork and ConflictWin
metrics, we construct theaborts graph; we depict this graphically
in Figure 5, although our current tool presents the results as a ma-
trix. The aborts graph summarizes the commit-abort relationship
between pairs ofatomic blocks; it is similar to Chakrabarti’s dy-
namic conflict graphs [6] in helping linking the symptoms of lost
performance to their likely causes.

2.3 Identifying Conflicting Data Structures
Atomic blocks abstract the complexity of developing multi-threaded
applications. When usingatomic blocks, the programmer needs
to identify the atomicity in the program whereas using locks the
programmer should identify the shared data structures and imple-
ment atomicity for the operations that manipulate them. However,
based on our experience usingatomic blocks, it is difficult to
achieve good performance without understanding the details of the
data structures involved [9, 28].

If the programmer wants transactional applications to have good
performance it is necessary to know the shared data structures and
the operations applied to them. In this case the programmer can use
atomic blocks in an optimal way by trying to keep their scope
as small as possible. For example, as long as the program correct-
ness is preserved, the programmer should use two smalleratomic
blocks instead of one largeatomic block or as in Figure 1 put the
atomic block inside thewhile loop instead of outside. In an ear-
lier paper, we illustrated examples where smalleratomic blocks

Figure 5: A part of the aborts graph drawn from the 4-
threaded execution of non-optimized Bayes application. In this
graph, AB5 is the atomic block which executesInsert op-
eration, AB11 is theatomic which caches shared variables to
thread local variables AB12 is theatomic block which exe-
cutes functionFindBestInsertTask. 73% of AB12’s aborts
were caused by AB5 amounting to 63% of wasted work and
20% of the AB12’s aborts were caused by AB11 amounting to
29% of wasted work. AB5 and AB11 did not abort.

aborted less frequently and incurred less wasted work when they
did abort [9, 15, 19].

In addition, the underlying TM system may support language-
level primitives to tune performance, or provide an API that the
programmer can use to give hints about the shared data structures.
For example, Yooet al. [26] used thetm_waiver keyword [17]
to instruct the compiler to not instrument thread-private data struc-
tures with special calls to the STM library. In Haskell-STM [10] the
user must explicitly identify which variables are transactional. To
reduce the overhead of privatization safety, Spearet al. [22] have
proposed that the programmer should explicitly tell which trans-
actions privatize data [23]. We believe that profiling results can
help programmers use these techniques by describing the shared
data-structures used by transactions, and how conflicts occur when
accessing them.

In small workloads which in total have few data structures, the
results from conflict point discovery (Section 2.1) would be suf-
ficient to identify the shared data structures. For example, in the
STAMP applications, there are usually only a small number of dis-
tinct data structures, and it is immediately clear which transaction
is accessing which data.

However, in larger applications, data structures can be more com-
plex, and can also be created and destroyed dynamically. To handle
this kind of workload, our prototype tool provides a tree view that
displays the contended objects along with the places where they
are the subject of conflicts (Figure 6). In the example, the object
fragmentedMapPtr has been involved in conflicts at 5 different
places which have also been called from different functions.

In our profiling framework we have developed an effective and
low-overhead method for identifying the conflicting data structures,
both static and dynamic. It is straightforward to identify static data
structures such as global shared counters: it is sufficient to trans-
late the memory address of the data structure back to a variable.
However, it is more difficult when handling dynamically-allocated
data structures such as an internal node of a linked list; the node’s
current address in memory is unlikely to be meaningful to the pro-
grammer.

For instance, suppose that theatomic block in Figure 7 con-
flicts while executinglist[2]=33 (assigning a new value to the
third element in a linked list). To describe the resulting conflict



Figure 7: This figure demonstrates our method of identifying conflicting objects on the heap. The code fragment on the left creates a
linked list with 4 elements. When the TM system detects a conflict in theatomic block, it logs the address of the contended object.
During GC, the conflicting address is traced back to the GC root which is the list node. Then the memory allocator is queried at
which instruction the memory at address "0x08" was allocated. At the end, by using the debugger engine the instruction is translated
to a source line.

Figure 6: Per-object bottom-up abort tree. This view shows
the contended objects and the different locations within the
program where they have been involved in conflicts. Re-
sults shown are obtained from the 4 threaded execution of
non-optimized Intruder application. For example, object
fragmentedMapPtr has been involved in conflict at 5 differ-
ent places - 3 in functionProcessPackets, 1 in Delete and
1 in Insert. Each object is also cumulatively assigned wasted
work. Non-translated addresses are internal library calls.

to the programmer, we find a path of references to the internal list
node from an address that is mapped to a symbol. This approach is
similar to the way in which the garbage collector (GC) finds non-
garbage objects. Indeed, in our environment, we map the conflict-
ing objects to symbols by finding the GC roots that they are reach-
able from. If the GC root is a static object then we can immediately
translate the address to a variable name. If the GC root is dynam-
ically created, we use the memory allocator to find the instruction
at which GC root was allocated and translate the instruction to a
source line. To do this, we extended the memory allocator to record
allocation locations.

2.4 Visualizing Transaction Execution
The next aspect of our profiling system is a tool that plots a time
line of the execution of all the transactions by the different threads
(Figure 8). In the view pane the transactions start from the left and
progress to the right. Successfully committed transactions are col-
ored black and aborted transactions are colored gray. The places
where a color is missing means that no transaction has been run-
ning. The view in Figure 8 plots the execution of the Genome ap-

plication from STAMP. From this view we can easily identify the
phases where aborts are most frequent. In this case, most aborts
occur during the first phase of the application when repeated gene
segments are filtered by inserting them in a hashtable and during
the last phase when building the gene sequence.

The transaction visualizer provides a high-level view of the per-
formance. It is particularly useful at the first stage of the per-
formance analysis when the user identifies the hypothetical bot-
tlenecks and then analyzes each hypothesis thoroughly. Another
important application of the transaction visualizer is to identify dif-
ferent phases of the program execution (e.g., regions with heavily
aborting transactions).

To obtain information at a finer or coarser granularity, the user
can respectively zoom in or zoom out. Clicking at a particular point
on the black or gray line displays relevant information about the
specific transaction that is under the cursor. The information in-
cludes: read set size, write set size,atomic block id, and if the
transaction is gray (i.e., aborted) it displays information about the
abort. By selecting a specific region within the view pane, the tool
automatically generates and displays summarized statistics only for
the selected region.

Existing profilers for transactional applications operate at a fixed
granularity [1, 4, 19, 21]. They either summarize the results for the
whole execution of the program or display results for the individ-
ual execution ofatomic blocks. Neither of these approaches can
identify which part of a program’s execution involves the greatest
amount of wasted work. But looking at Figure 8 we can easily tell
that in Genome transactions abort at the beginning and the end of
the program execution.

The statistical information summarized for the complete pro-
gram execution is too coarse and hides phased executions, whereas
per-transaction information is too fine grain and misses conclu-
sive information for the local performance. Obtaining local per-
formance summary is important for optimizing transactional appli-
cations because we can focus on the bottlenecks on the critical path
and then effectively apply Amdhal’s law.

By using the transaction visualizer, the programmer can easily
obtain a local performance summary for the profiled application by
marking the region that (s)he is interested in. This will automati-
cally generate summary information about the conflicts, transaction
read and write set sizes, and other TM characteristics, but only for
the selected region. The local performance summary from Figure 8
shows that aborts at the beginning of the program execution happen
only in the firstatomic block and aborts at the end of the program
execution happen at the lastatomic block in program order.

The global performance summary that our tool generates includes
most of the statistics that are already used in the research literature.



Figure 8: The transaction visualizer plots the execution of Genome with 4 threads. Successfully committed transactions are colored
in black and aborted transactions are colored in gray. From this view, we can easily distinguish the different phases of the program
execution such as regions with high aborts. By selecting different regions in this view, our tool summarize the profiling data only for
the selected part of the execution. To increase the readability of the data, we have redrawn this figure based on a real execution.

These are total and averaged results for transaction aborts, read and
write set sizes, etc. In addition we build a histogram about the time
two or more transactions were executing concurrently. This his-
togram is particularly useful when diagnosing lack of concurrency
in the program. For example, it is possible that a program has very
low wasted work but it still does not scale because transactions do
not execute concurrently.

3. PROFILING FRAMEWORK
We have implemented our profiling framework for the Bartok-STM
system [12]. Bartok-STM updates memory locations in-place by
logging the original value for rollback in case a conflict occurs. It
detects conflicts at object granularity, eagerly for write operations
and lazily for read operations. The data collected during profiling
is typical of many other TM systems, of course.

The main design principle that we followed when building our
profiling framework was to keep the probe effect and overheads as
low as possible. We sample runtime data only when a transaction
starts, commits or aborts. For every transaction we log the CPU
timestamp counter and the read and write set sizes. For aborted
transactions we also log the address of the conflicting objects, the
instructions where these objects were accessed, the call stack of
aborting thread and theatomic block id of the transactions that
win the conflict. We process the sampled data offline or during
garbage collection.

We have evaluated the probe effect and the overhead of our pro-
filing framework on several applications from STAMP and Worm-
Bench (Figure 9 and Figure 10). To quantify the probe effect, we
compared the application’s overall abort rate when profiling is en-
abled versus the abort rate when profiling is disabled; a low probe
effect is indicated by similar results in these two settings.

Our results suggest that profiling reduces the abort rate seen, but
that it does not produce qualitative changes such as masking all
aborts. These effects are likely to be due to the additional time spent
collecting data reducing the fraction of a thread’s execution during
which it is vulnerable to conflicts. In addition, logging on abort has
the effect of contention reduction because it prevents transactions
from being restarted aggressively.

In applications with large numbers of short-running transactions,
overheads can be higher as costs incurred on entry/exit to transac-
tions are more significant. Profiling is based on thread-private data
collection, and so the profiling framework is not a bottleneck for
the applications’ scalability.

4. CASE STUDIES
In this section we describe our experience of analyzing the perfor-
mance of applications from the STAMP TM benchmark suite [3]
and from the synthetic WormBench workload [27]. The goal of
this case study is to evaluate how effectively these techniques reveal
the symptoms and causes of the performance lost due to conflicts
in these applications.

For this experiment we have ported several applications from the
STAMP suite from C to C#. We did this in a direct manner by
annotating theatomic blocks using the available language con-
struct that the Bartok compiler supports. In the original STAMP
applications, the memory accesses insideatomic blocks are made
through explicit calls to the STM library, whereas in C# the calls
to the STM library are automatically generated by the compiler.
WormBench is implemented in the C# programming language.

4.1 Bayes
Bayes implements an algorithm for learning the structure of Baye-
sian networks from observed data. Initially our C# version of this
application scaled poorly (see Figure 11). By examining the data
structures involved in conflicts, we identified that the most heavily
contended object is the one used to wrap function arguments in a
single object of typeFindBestTaskArg (Figure 12(a)). Bartok-
STM detects conflicts at object granularity, and so concurrent trans-
actions cannot use the different fields of a givenFindBestTask-
Arg. In this case, this form of false conflict resulted in 98% of
the total wasted work. With 2 threads the wasted work constituted
about 24% of the program’s execution, and with 4 threads it in-
creased to 80%. We optimized the code by removing the wrapper
objectFindBestTaskArg and passing the function arguments
directly (see Figure 12(b)). After this small optimization Bayes
scaled as expected (Figure 11).

Furthermore, the profiling results showed that theatomic block
whose aborts caused the greatest wasted work (92%) is the one
which executes the functionFindBestInsertTask. The rea-
son why thisatomic block aborts repeatedly is because it in-
volves long-running read-only transactions that are exposed to con-
flicts from other threads. Theatomic block which performs the
Insert operation caused 73% of the aborts in theFindBest-
InsertTask function and theatomic block which caches shared
variables caused 20% ofFindBestInsertTask’s aborts (Fig-
ure 5 illustrates this, with AB12 being the atomic block in the
FindBestInsertTask function, AB5 beingInsert and AB11
beingCache).



#Threads Bayes+ Bayes- Gen+ Gen- Intrd+ Intrdr- Labr+ Labr- Vac+ Vac- WB+ WB-
2 4.39 4.69 0.09 0.10 3.69 3.51 0.19 0.15 0.80 0.80 0.00 0.00
4 16.29 27.31 0.29 0.50 14.90 13.65 0.35 0.36 2.30 2.45 0.00 0.00
8 53.74 66.08 0.50 0.82 39.64 37.41 0.40 0.47 4.91 5.30 0.02 0.02

Figure 9: The abort rate (in %) when the profiling is enabled ("+") and disabled ("-"). Results show that the profiling framework
introduces small probe effect by reducing the abort rate for some applications. Results are average of 10 runs. Results for 1 are
omitted because there are no conflicts.

#Threads Bayes+ Bayes- Gen+ Gen- Intrd+ Intrdr- Labr+ Labr- Vac+ Vac- WB+ WB-
1 1.59 1.00 1.28 1.00 1.29 1.00 1.07 1.00 1.26 1.00 0.71 1.00
2 1.00 0.56 0.92 0.65 0.97 0.58 0.64 0.61 0.83 0.59 0.60 0.55
4 0.23 0.23 0.91 0.50 0.91 0.36 0.45 0.46 0.58 0.40 0.41 0.33
8 0.21 0.20 0.72 0.50 1.57 0.38 0.72 0.56 0.53 0.34 0.33 0.22

Figure 10: Normalized execution time with profiling enabled ("+") and profiling disabled ("-"). Results are average of 10 runs and
normalized to the single threaded execution of the respective workload but with profiling disabled.

//Function declaration with wrapper object
Task FindBestInsertTask(FindBestTaskArg argPtr) {

Learner learnerPtr = argPtr.learnerPtr;
Query[] queries = argPtr.queries;
...

}
...
// Preparing a wrapper object
FindBestTaskArg argPtr = new FindBestTaskArg();
argPtr.learnerPtr = learnerPtr;
argPtr.queries = queries;
...
// Pass arguments with a wrapper object
FindBestInsertTask(argPtr);

(a)

// Function declaration with explicit parameters
Task FindBestInsertTask(

Learner learnerPtr, Query[] queries, ...)
...
// Passing arguments without a wrapper object
FindBestInsertTask(learnerPtr, queries, ...)

(b)

Figure 12: Code fragments from Bayes: a) the original code
with the wrapper object FindBestTaskArg; b) the optimized
code with the removed wrapper object and passing the function
parameters directly.

In Figure 10 the non-optimized version of Bayes scales super-
linearly from 1 to 2 threads. This phenomena happens because the
algorithm for learning the structures is relaxed by using a cached
version of two shared variables. The subsequent operations may
operate on outdated values and cause the learning process to be
shorter or longer. In our case, for the suggested input the learning
process was shorter.

In this experiment, Bayes is a representative example of applica-
tions that require optimizations after being ported from a C-based
environment to an object oriented environment.

4.2 Intruder
Intruder implements a network intrusion detection algorithm that
scans network packets and matches them against a dictionary of
known signatures. The authors of STAMP report that this appli-
cation scales well on HTM systems but does not scale well on
STMs [3]. Optimizing this application helped us determine the ef-
fectiveness of our profiling techniques.

The most contended objects in Intruder werefragmented-
MapPtr anddecodedQueuePtr. In 4-threaded execution, abo-
rts in whichfragmentedMapPtr was involved caused 67.6%
wasted work and aborts in whichdecodedQueuePtr was in-

// Original
1: char[] data = new char[length];
2: Array.Copy(packetPtr.Data, data, length);
3: Decoded decodedPtr = new Decoded();
4: decodedPtr.flowId = flowId;
5: decodedPtr.data = data;
6:
7: Queue decodedQueuePtr = this.decodedQueuePtr;
8: decodedQueuePtr.Push(decodedPtr);

(a)

// Optimized
1: Decoded decodedPtr = new Decoded();
2: Queue decodedQueuePtr = this.decodedQueuePtr;
3: decodedQueuePtr.Push(decodedPtr);
4:
5: char[] data = new char[length];
6: Array.Copy(packetPtr.Data, data, length);
7: decodedPtr.flowId = flowId;
8: decodedPtr.data = data;

(b)

Figure 13: Code fragment from Intruder: (a) is the original
code fragment from Intruder – most of the conflicts happen in
line 8 which result in substantial wasted work; (b) we moved
the call to Push up in the code to line 2 – this optimization
didn’t reduce abort rate, but reduced the wasted work.

volved caused 27.1% of wasted work. The wasted work of the both
objects constituted 92.7% of the total program execution.

ThefragmentedMapPtr object is a map data structure used
to reassemble the fragmented packets. Its implementation is based
on red black tree and most important conflicts were happening dur-
ing a lookup. On the other hand, the lookup was invoked while
adding a new entry to check if it already exists. We optimized the
program by replacing the red black tree with a chaining hashtable,
which allows higher degree of parallelism. The performance im-
proved significantly and the wasted work ondecodedQueuePtr
became the most dominant. Although the wasted work was the
highest for this data structure, the contention was low. Unlike our
approach, basic conflict point discovery would fail to detect this
fact and direct the programmer’s attention to other parts of the code
that are not actually bottlenecks.

ThedecodedQueuePtr object is a queue data structure that
stores a reference to already reassembled packets. All the con-
flicts were occurring when inserting the reassembled packets in a
queue (i.e., in the longestatomic block executing function the
Process). The underlying implementation of the queue was an
array data structure. We thought that like in Bayes, because con-
flicts are detected at object granularity, the concurrent accesses to



#Threads BayesNonOpt BayesOpt IntrdNonOpt IntrdOpt LabrNonOpt LabrOpt
1 1.00 1.00 1.00 1.00 1.00 1.00
2 0.32 0.56 1.16 0.58 5.25 0.61
4 1.49 0.23 2.92 0.36 30.42 0.46
8 4.81 0.20 n/a 0.38 n/a 0.56

Figure 11: The normalized execution time of Bayes, Labyrinth and Intruder before and after optimization. Results are average
of 10 runs and the execution time for each applications is normalized to its single threaded execution time. "n/a" means that the
application run longer than 10 minutes and was forced termination.

#Threads TCC-Orig TCC-Opt Eazy-Orig Eazy-Opt TL2-Orig TL2-Opt
1 1.00 1.01 1.00 0.96 1.00 0.80
2 0.73 0.67 0.61 0.59 0.92 0.60
4 0.51 0.43 0.37 0.35 0.63 0.48
8 0.39 0.31 0.26 0.22 0.65 0.52

Figure 14: Execution time of Intruder before and after optimization on Scalable-TCC, Eazy-HTM and TL2. Results are average of
10 runs and normalized to the single threaded original version of Intruder.

the head and the tail of the queue were falsely causing conflicts.
Therefore we changed the queue with one that uses linked list, but
the performance did not improve. We then noticed that conflicts do
not happen for bothPush andPop operations but only forPush.
After, we have examined the code more carefully we noticed that
the call toPush is the last statement of theatomic block. It
was preceded with computation causing significant wasted work
on abort. As shown in Figure 13, we moved the call toPush to be
the first statement in theatomic block. This did not reduce the
abort rate but reduced the wasted work as conflicts were being de-
tected earlier in the transaction’s execution, thus wasting little time
in executing code that eventually will be rolled-back. After these
two optimizations, Intruder scaled as expected (see Figure 11).

Needless to say that in our case the latter optimization was ef-
fective because Bartok-STM detects conflicts for write operations
eagerly. In the case of TM systems with lazy conflict detection,
this optimization would not be so effective because the TM system
would still continue the speculative execution while the transaction
is invalid.

To verify that these changes do not degrade performance on other
TM systems, we made corresponding changes to the original ver-
sion of Intruder. Then, we executed the resulting application using
the TL2 STM library [8], and in a simulated environment using
some state-of-the-art HTM systems (Scalable-TCC [5] and Eazy-
HTM [24]). The results that we have obtained are consistent and
shown in Figure 14.

In this experiment, Intruder is a representative example of appli-
cations which can be optimized by using different data structures
such as hashtable that allow more parallelism. Also, another op-
timization that TM applications can benefit is to move code state-
ments, a technique that optimizing compilers use pervasively.

Last but not least, we would like to note that the authors of
STAMP have designed this benchmark suite with the purpose to
benchmark the performance of different TM implementations. There-
fore, to benchmark broad spectrum of implementations it is not nec-
essary that applications in this suite are implemented in the most
optimal way and expected to scale. In fact, Intruder is a very use-
ful workload because it illustrates how an application’s behavior
can be dependent on the TM system that it uses. We also believe
that STAMP authors were aware that using hashtable instead of red
black tree would make the application more scalable for STMs.

4.3 Labyrinth
Labyrinth implements a variant of Lee’s path routing algorithm
used in drawing circuit blueprints. The only data structure caus-

ing conflicts in this application was the grid on which the paths
are routed. Almost all conflicts were happening in the method that
copies the shared grid into a thread local memory. The wasted work
due to the aborts at this place amounted to 80% of the total program
execution with 2 threads and 98% with 4 threads. In this case we
followed a well known optimization strategy described by Watson
et al. [25]. The optimization is based on domain specific knowl-
edge that the program still produces correct result even if threads
operate on an outdated copy of the grid. Therefore, we annotated
thegrid_copy method to instruct the compiler to not instrument
the memory accesses insidegrid_copy with calls to the STM li-
brary. After this optimization Labyrinth’s execution was similar to
the one reported by the STAMP suite’s authors [3] (see Figure 11).

Although our prior knowledge of the existing optimization tech-
nique, this use case serves as a good example when TM applica-
tions can be optimized by giving hints to the TM system in similar
way as with early release.

4.4 Genome, Vacation, WormBench
Genome, Vacation and WormBench scaled as reported by their re-
spective authors. Nevertheless, we still profiled them to see if we
could obtain further improvements. In Genome most of the aborts
occurred in the first and the lastatomic blocks in the program or-
der (see Figure 8). With 4 threads, the total wasted work in Genome
amounted to 1.2% of the program execution. In Vacation, almost
all aborts occurred in theatomic block which makes reservations.
With 4 threads, the total wasted work in Vacation amounted to 2%
of the program execution. In our setup, WormBench had almost no
conflicts—in 4-threaded execution, from 100 000 transactions only
10 aborted.

In these applications, there was not any opportunity for further
optimizations. However in Vacation we saw that the most aborting
atomic block encloses a while loop. We were tempted to move
the atomic block inside the loop as in Figure 1 but that would
change the specification of the application that the user can specify
the number of the tasks to be executed atomically. Moving the
atomic block inside the loop would always execute one task and
therefore reduce the conflict rate but the user will no longer be able
to specify the number of the tasks that should execute atomically.
Also, similar changes may not always preserve the correctness of
the program because they may introduce atomicity violation errors.

5. RELATED WORK
In previous work we [29] and Lev and Herlihy [13] introduced tech-
niques for debugging transactional programs. These techniques fo-



cus on identifying correctness errors, rather than investigating per-
formance.

Chafi et al. developed the Transactional Application Profiling
Environment (TAPE) which is a profiling framework for HTMs [4].
The raw results that TAPE produces can be used as input for the
profiling techniques that we have proposed. This would enable pro-
filing transactional applications that execute on HTMs or HyTMs.

In a similar manner, the Rock processor provides a status reg-
ister to understand why transactions abort [7] (reflecting conflicts
between transactions, and aborts due to practical limits in the Rock
TM system). Examples include transactions being aborted due to
a buffer overflow or a cache line eviction. Profiling applications in
this way is complementary to our work which will allow users to
further optimize their code for certain TM system implementations.

Concurrent with our own work, Chakrabarti [6] introduced dy-
namic conflict graphs (DCG). A coarse grain DCG represents the
abort relationship between theatomic blocks similar to aborts
graph (see Figure 5). A fine grain DCG represents the conflict re-
lationship between the conflicting memory references. To identify
the conflicting memory references, Chakrabarti proposed a tech-
nique similar to basic conflict point discovery [29]. Our new exten-
sions over basic conflict point discovery (Section 2.1) would gen-
erate more complete DCGs. The more detailed fine grain DCGs
would complement the profiling information by linking the symp-
toms of lost performance to the reasons at finer statement granu-
larity. In addition, identifying conflicting objects is another feature
which relates the different program statements where conflicts hap-
pen with the same object and vice versa.

Independently from us, Lourençoet al. [16] have developed a
tool for visualizing transactions similar to the transaction visualizer
that we describe in Section 2.4. They also summarize the common
transactional characteristics that are reported in the existing liter-
ature such as abort rate, read and write set, etc. over the whole
program execution. Our work complements theirs by reporting re-
sults in source language such as variable names instead of machine
addresses. Also, we provide local summary which is helpful for ex-
amining the performance of specific part of the program execution.

In an earlier paper we profiled Haskell-STM applications using
per-atomic block statistics [21]. We extend this work by provid-
ing mechanisms to obtain statistics at various granularity, includ-
ing per-transaction, per-atomic block, local and global summary.
In addition, our statistics include contextual information compris-
ing the function call stack which is displayed via the top-down
and bottom-up views. The contextual information helps relating
the conflicts to the many control flows in large applications where
atomic blocks can be executed from various functions and where
atomic blocks include library calls.

In this earlier work, we also explored the common statistical data
used in the research literature to describe the transactional charac-
teristics of the TM applications: time spent in transactions, read
set, write set, abort rate, etc. In addition we generate a histogram
about how much of the transactions’ execution interleave. This in-
formation is particularly useful to see the amount of parallelism in
the program and find cases when a program does not abort but also
does not scale.

6. CONCLUSION AND FUTURE WORK
In this paper we have introduced new techniques for profiling trans-
actional applications. The goal of these profiling techniques is
to help programmers find the bottlenecks specific to the program
rather than the bottlenecks specific to the underlying TM system.
To generate more comprehensive results we have extended our pre-
vious work on conflict point discovery. The extensions include

metrics such as WastedWork and ConflictWin, assigning context
to conflict points, building abort graphs, visualizing the transac-
tions and identifying conflicting objects and data structures. We
report all results in source code level such as variable names and
statements.

To examine the effectiveness of the proposed techniques we have
profiled applications from STAMP TM benchmark suite and Worm-
Bench. Based on the profiling results we could successfully opti-
mize Bayes, Labyrinth and Intruder. Bayes is an example where
programs do not perform as expected when ported from non-object
oriented environment such as C to object oriented environment such
as C# or vice-versa. Labyrinth is an example where the program-
mer may give hints to the underlying TM system about the shared
data structures and the operations applied on them. Intruder is an
example of a program with poor performance which can be im-
proved by using data structures with higher degree of parallelism
and restructuring the code to reduce the wasted work.

In future work we plan to implement profiling frameworks for
other TM systems and profile more complex applications that are
implemented in other platforms. We also plan to make the C# ver-
sions of the STAMP applications from this work publicly available.
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