
LIRA: Adaptive Contention-Aware
Thread Placement for Parallel Runtime Systems

Alexander Collins
∗

University of Edinburgh
a.collins@ed.ac.uk

Tim Harris
Oracle Labs, Cambridge

timothy.l.harris@oracle.com

Murray Cole
University of Edinburgh
mic@inf.ed.ac.uk

Christian Fensch
Heriot-Watt University
c.fensch@hw.ac.uk

ABSTRACT
Running multiple parallel programs on multi-socket multi-core ma-
chines using commodity hardware is increasingly common for data
analytics and cluster workloads. These workloads exhibit bursty
behavior and are rarely tuned to specific hardware. This leads
to poor performance due to suboptimal decisions, such as poor
choices for which programs run on the same socket. Consequently,
there is a renewed importance for schedulers to consider the struc-
ture of the machine alongside the dynamic behavior of workloads.

This paper introduces LIRA, a spatial-scheduling heuristic for
selecting which parallel applications should run on the same socket
in a multi-socket machine. We devise two flavors of scheduler us-
ing this heuristic: (i) LIRA-static which collects performance data
in an offline profiling step to decide the schedule when a program
starts, and (ii) LIRA-adaptive which operates dynamically based
on hardware performance counters available on off-the-shelf hard-
ware. LIRA-adaptive does not require separate, offline workload
characterization runs, and it accommodates a dynamically chang-
ing mix of applications, including those with phase changes.

We evaluate LIRA-static and LIRA-adaptive using programs from
SPEC OMP and two graph analytics projects. We compare our ap-
proaches to the best possible performance obtained across all static
mappings of 4 programs to 2 sockets, the libgomp OpenMP run-
time that comes with GCC and Callisto, a state-of-the-art sched-
uler. LIRA-static improves system throughput by 10% compared to
libgomp, and LIRA-adaptive improves system throughput by 13%.
Compared to Callisto, LIRA-adaptive improves performance in 30
of the 32 combinations tested, with an improvement in system
throughput of up to 7%, and 3% on average over 32 combinations.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Scheduling

Keywords
Multi-core, multi-socket, thread placement, adaptive scheduling

∗Work done while at Oracle Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROSS ’15, June 16, 2015, Portland, Oregon, USA
Copyright 2015 ACM 978-1-4503-3606-2/15/06 ...$15.00.
http://dx.doi.org/10.1145/2768405.2768407

1. INTRODUCTION
Clusters consisting of commodity hardware are frequently used

for a variety of scientific workloads. These include Beowulf clus-
ters or time-sharing systems for parallel applications [1]. Running
parallel jobs together on the same machine as part of a cluster is
becoming increasingly important as the desire for efficient use of
hardware leads to greater co-location of workloads on the same ma-
chine [4]. In addition, many parallel workloads are now malleable
meaning that workloads can run over a varying number of hardware
contexts, using abstractions such as OpenMP and bursty meaning
that their CPU demand varies during execution.

In this paper, we investigate running a dynamically changing mix
of this kind of parallel program on multi-socket shared-memory
machines. We explore how to make online decisions about which
of these programs’ threads should be co-located on a single socket.

We build on Callisto [9], a user-mode framework for exploring
the interaction between the system-wide scheduler and the runtime
systems in individual programs. Callisto reduces scheduler-related
interference by reducing lock-holder pre-emption problems, by
reducing load imbalance between worker threads within a program,
and by making explicit thread-to-core allocations which adapt to
the amount of parallelism available within a program.

In this paper, we extend Callisto to handle more than two pro-
grams on a shared-memory multi-core multi-socket machine and
develop LIRA-adaptive, an online adaptive scheduler that selects
which sets of programs should share cores on the same socket, and
is able to respond to phase changes within a program’s execution.

We evaluate our adaptive scheduler by comparing it with:
(i) best-static which selects the best program-to-socket mapping
for a given workload by exhaustively trying every combination a
priori, (ii) LIRA-static which selects the program-to-socket map-
ping using the same heuristic as LIRA-adaptive but based on per-
program solo-run profiling, (iii) Callisto and (iv) libgomp from
GCC with scheduling performed by the default Linux OS sched-
uler. LIRA-static avoids the cost of collecting profiling information
during execution, but also prevents adaptation to phase behavior.

• We demonstrate how different program-to-core mappings af-
fect performance and measure the performance degradation
caused by ignoring the presence of separate sockets.

• We develop an online adaptive scheduler, which we call
LIRA-adaptive, which reduces interference and resource con-
tention in a multi-socket environment.

• We compare LIRA-adaptive to two competing scheduling ap-
proaches: Callisto and libgomp OpenMP.

• We also demonstrate that LIRA-adaptive is better than an
offline static approach (LIRA-static) using the same heuristic.

libgomp Callisto AB−CD AC−BD AD−BC

0
0

.4
0

.8
1

.2
A

N
T

T
 (

lo
w

e
r

is
 b

e
tt

e
r)

0
1

2
3

4
5

S
T

P
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

ANTT STP

Figure 1: The Average Normalized Turnaround Time (ANTT)
and System Throughput (STP) achieved by: (i) libgomp from
GCC 4.8.0, (ii) Callisto and (iii) Callisto with the three static
program-to-socket mappings. Error bars show 95% confidence
intervals for the mean.

2. MOTIVATING EXAMPLE
Figure 1 shows the performance of running four programs concur-
rently on a dual-socket machine with 8 cores per socket, using dif-
ferent runtime systems and program-to-socket mappings.

The experiment uses ammp (A) and swim (B) from the SPEC
OMP 2012 benchmark suite, and pagerank (C) and triangle_counting
(D) from the Green-Marl domain-specific graph analytics project
[10]. The programs all run concurrently. Each is run for at least 9
repeats, and possibly more to ensure that all 4 programs are running
throughout the experiment.

We measure two system-wide performance metrics: Average
Normalized Turnaround Time (ANTT) and System Throughput
(STP) [6]. Both metrics are discussed further in Section 3.

Ideally, we would like to achieve an ANTT of 1 and an STP of
4. This would be the result if there was no resource contention
between programs. In practice, worse results may be seen when
contention is significant, whereas better results may be achieved
if bursty workloads interact well, for example by overlapping pro-
gram execution to hide blocking for disk I/O or synchronization.

Figure 1 compares five scheduling variants of this workload:

• libgomp – The OpenMP implementation of libgomp from
GCC 4.8.0. Each program is run using a separate instance of
the libgomp library. Each is configured to use passive syn-
chronization and 16 OpenMP threads. Therefore, each pro-
gram has sufficiently many threads to make use of all cores
on the system. Scheduling of these threads is performed by
the default Linux 2.6.32 scheduler.

• Callisto – This variant uses Callisto [9]. Each program cre-
ates 16 OpenMP threads, and Callisto multiplexes these over
the 4 cores allocated to each program. The sets of 4 cores
will generally be in the same socket, but there is no con-
trol over specifically which program gets which set of cores
(this may vary over time as programs start and complete). If
one program cannot use all of its allocated cores, then Cal-
listo makes these available to other programs; this provides
ammp and swim with additional cores when pagerank and
triangle_counting are loading their input graphs.

• AB-CD, AC-BD, AD-BC – These remaining three configura-
tions use a modified version of Callisto that fixes each pro-
gram’s threads to a specific quarter of the machine. For pro-
grams A–D, the notation indicates which pairs of programs
are placed on the same socket. For instance AD-BC indicates

Program measured

P
ro

g
ra

m
 p

ro
v
id

in
g

 w
o

rk
lo

a
d

− −

+ +

− − − − + − − − − − − +

− + − − − + − − − −

−

− + +

− − − − − − − − + − − −

−

− − − − − − − − − − − −

− − − − − − − − − − −

− − − − − − − − +

− − − − − − − −

+ − + − − − − − − − −

− − − − − −

− − − − − − − − − − − − − − − −

+ + − −

− − − − − + − −

a
m

m
p

a
p

s
i

a
rt b
c

b
t3

3
1

b
w

a
ve

s

c
a

c
h

e
h

o
g

d
o

m
_

b
c

e
q

u
a

k
e

fm
a

3
d

h
o

p
_

d
is

t

ilb
d

c

m
d

p
a

g
e

ra
n

k

s
p

in

s
w

im

tr
ic

n
t

w
u

p
w

is
e

ammp

apsi

art

bc

bt331

bwaves

cachehog

dom_bc

equake

fma3d

hop_dist

ilbdc

md

pagerank

spin

swim

tricnt

wupwise

S
p

e
e

d
u

p
 o

ve
r

ru
n

n
in

g
 a

lo
n

e
0

x
0

.2
x

0
.4

x
0

.6
x

0
.8

x
1

x
1

.2
x

1
.4

x
1

.6
x

1
.8

x
2

x

Figure 2: Pair-wise speedup of programs, comparing sharing
a socket to using separate sockets. Boxes annotated with a
– indicate cases where performance decreased, and + where
performance increased. Regions marked with a – show where
system performance can be improved.

that A and D are together, and that B and C are together. Ac-
counting for symmetry, there are three alternative choices of
allocating programs to sockets.

The results show that the choice of program to socket mapping
has an impact on both the ANTT and STP of the system. Cal-
listo achieves better ANTT than OpenMP, which is expected given
that Callisto’s aim is to reduce interference between programs.
This interference can be reduced further by partitioning programs
within separate sockets, as shown by the improved ANTT and STP
achieved by each of the configurations AB-CD, AC-BD and AD-BC.
Moreover, the choice of pairings of programs has a significant ef-
fect on performance. The ANTT and STP varies amongst the three
configurations, with AD-BC achieving better ANTT and STP com-
pared to the other two. LIRA-adaptive attempts to identify these best
pairings at runtime.

3. MEASURING PERFORMANCE
Average Normalized Turnaround Time (ANTT) and System Through-
put (STP) are system-level metrics suitable for exploring the per-
formance of multi-program environments.

ANTT is a measure of the perceived slow-down of programs,
compared to executing them in isolation in a given environment,
and is a lower-is-better metric. STP is a measure of the rate at
which the system completes work. It is a higher-is-better metric.

The ANTT and STP of a system running n programs are com-
puted as follows. Here, TS

i is the execution time of each program
when run in isolation, and TM

i is the execution time of each pro-
gram when run alongside other programs.

ANTT =
1

n

∑
i

TM
i

TS
i

STP =
∑
i

TS
i

TM
i

Ideally, we want to achieve an ANTT of 1 and an STP of n, which
corresponds to the execution time being unaffected by running in a
multi-program environment.

In order to quantify noise, we run each experiment for multiple
repeats. We also run programs repeatedly within experiments to
ensure that the same workload exists on the system for the duration
of the experiment.

4. SOCKET SCHEDULING HEURISTIC
In this section we describe how LIRA characterises programs at
runtime, to identify a schedule that is likely to perform well. Sec-
tion 4.1 explores the performance degradation that occurs when
running pairs of programs on a multi-socket machine, and Sec-
tion 4.2 describes our heuristic technique for predicting program
pairings that minimize this degradation.

4.1 Pairwise Performance Degradation
Figure 2 shows a comparison between running pairs of programs
on the same socket to running them on distinct sockets.

We use a 16 core dual-socket machine for this experiment. The
programs used are detailed in Section 6.1. Each program is config-
ured to run 4 threads, pinned to either 4 distinct cores on different
sockets (A_-B_ using our previous notation), or 4 distinct cores on
the same socket (AB-__). This setup ensures that each program
is given the same amount of computational resource – 4 threads
pinned to 4 distinct physical cores – and that each thread has exclu-
sive use of the core to which it is pinned. Therefore any change in
performance is due to thread placement.

These results show that there can be a significant performance
impact associated with sharing the same socket as another program.
For about half of the program combinations there is an increase
in execution time of 20%, and a maximum increase of 50%. For
the other half of the programs there is minimal impact on sharing
sockets. In some rare cases, there is actually an increase in program
performance. In two cases, there is a 1.4x increase in performance
(discussed in Section 6.2).

These results suggest that a smarter scheduling approach could
avoid program slowdown by carefully choosing which programs
should share the same socket. It is also interesting to note that
there are clear “rows” and “columns” of red and white for some ap-
plications. For example, md is amenable to sharing the system as it
does not experience or cause slow-down when paired with any pro-
grams. In contrast, swim adversely affects the performance of most
programs when they run alongside it, except for md. Therefore md
and swim are good candidates to co-locate on the same socket, to
improve overall system performance.

4.2 LIRA: Heuristic for Socket Scheduling
Modern CPU architectures provide many hardware performance
counters, in the form of a set of dedicated hardware registers that
are incremented by the control logic of the CPU itself. These can
be used to record events on a per-thread basis, with low overhead or
impact on the behavior of the program. They include events such
as the number of cache misses at different levels of the hierarchy
and the number of completed instructions. The specific events that
are available is dependent on the underlying hardware. We use
the Performance API library [14] to set up and measure hardware
counters on our experimental platform. These counters provide
some measure of the behavior of programs, that we can use as
program features to build our predictive model which is the basis
of our scheduling heuristic.

Figure 3 shows the speedup of running pairs of programs concur-
rently on the same system over running them in isolation, against

0 1000 2000 3000 4000 5000

Difference in load instruction rate (instructions per second)

S
p

e
e

d
u

p x
x

xx
x

x
x

xx
x

x

x
x

x

x x
xx x

x

x xxxx xx

x

x x

xx xxx xx xx
xx xx x

x

x

xx x x

xx

x

x

x

x
xx x

x

x

x

x x
xx x x

x

x

x xx
x

x
x

x

x

x
x
x xx x

x
x
x

x

x

x
xx
x

x
x

x

x
x

x

x

x
x x

x

x

x

x
x

x
x

x

x

x

x

x x
xxx

x
x

x
x
xx

x

x

x

x xx x
xx

x

x
x

x

x xx x

x

x

x

x

x x
xx

x
x

x

x
x

x

xx

x

x

x x

x

x

x

xx
x
x

x
x

xx x
x

x

x

x

xx
x x

xx
x

x
x

x
x

x x

x

x

x

x x

xxx xx xxxx xx xx xxx
x x

x

xx

x

x

x

x
xx
x

x

x

x x
x

x
x

x
x

x

x

x

x

x

x
x x

x

x xxx
x

x

x x
x

xx xx x

x

x

xx +
+++++ +

+++

+

+

+

++++

+

+ +
+

+

+

+ ++
+
++
+

+
+

+
+

+
++++++ ++

+

+++ ++ +

+

++

+

+
+++

+
+
+
+++

0
.6

x
0

.8
x

1
.0

x
1

.2
x

Figure 3: Average speedup of pairs of programs compared to
execution in isolation, plotted against the absolute difference
in the load instruction execution rate. There are two distinct
clusters in the data, shown by the red x and blue + markers.

the absolute difference in the rate at which the programs execute
load instructions. This rate is measured separately for each of the
program’s threads then averaged using the arithmetic mean. For
these measurements, we use the same 16 core dual-socket machine
as before. These results show that the average slowdown is greatly
reduced when the difference in load instruction rate is maximized.
Program pairs with a large difference in load instruction rate (the
cluster to the right of the plot) have a geometric mean speedup of
98% and a maximum slowdown of 19%. In contrast, program pairs
with a small difference in load instruction rate (the cluster to the
left of the plot) have smaller geometric mean speedup of 93% and
a much higher maximum slowdown of 44%. This shows that pairs
of programs with different load instruction rate are more likely to
achieve good performance. The intuition here is that, by pairing
programs in this way, pressure on the memory system is reduced.

We use this as our heuristic for predicting which pairs of pro-
grams will cooperate more effectively when run on the same socket.

The LIRA Heuristic
Given a set of programs to run on the system, each with a given
load instruction rate, we choose a mapping from programs to sock-
ets such that the absolute difference in the instruction rate of the
programs on each socket is maximized. Consider a dual socket
machine with four programs running, programs A and B are sched-
uled to the first socket, and programs B and C to the second socket.
The programs have load instruction rates RA, RB , RC and RD .
The chosen schedule is the one that maximises the expression:

abs(RA −RB) + abs(RC −RD)

5. SPATIAL SCHEDULING FOR SOCKETS
In this section we introduce LIRA-adaptive, an online adaptive
scheduler built on top of Callisto. Section 5.1 explains how Cal-
listo’s spatial thread scheduling works. Section 5.2 discusses Cal-
listo’s behavior in a multi-socket environment. We then describe
two variants of our multi-socket-aware scheduler: Section 5.3
describes LIRA-static which uses profile data to perform static
scheduling, and Section 5.4 describes LIRA-adaptive which per-
forms online adaptive scheduling.

5.1 Callisto’s Thread Scheduler
The Callisto runtime system uses dynamic spatial scheduling to
allocate threads to physical cores. Each program that runs on
the system spawns multiple worker threads and pins each thread
to each physical core. Of the threads pinned to each core, one
is designated the high priority thread, and the remainder as low

S
o
c
k
e
t

1
S
o
c
k
e
t

2

Prog A

Prog B

Prog C

Prog D

Cores

Key

(a) (b) (c)

Figure 4: Example thread to socket schedules. High priority
threads are marked with an H. (a) produced by LIRA-static
(pairings A,B and C,D are determined to be optimal using
the scheduling heuristic in Section 4.2), (b) Callisto’s spatial
scheduling, and (c) A pathologically bad schedule produced by
Callisto, with maximal intra-socket communication overhead.

priority threads. An example of this is shown in Figure 4. Callisto
ensures that each program has an equal share of high priority
threads, and that the main thread for each program is given high
priority. The aim of this is to ensure that the main thread can
always run, as it often acts as a producer of parallel tasks, and so
its performance is critical to the performance of the program as a
whole. This also provides a fair distribution of resources across all
running programs.

Callisto’s aim is to run high priority threads most of the time.
This means that the high priority threads experience low inter-
ference from other threads running on the system. For example,
they can make full use of core-local caches, without the threat of
other programs evicting cache lines that would lead to performance
degradation. This setup also reduces the number and frequency of
context switches, reducing the overhead they incur.

In order to maintain good utilization of resources, a low prior-
ity thread is allowed to run when the high priority thread is not
runnable, for example when the high priority thread blocks for disk
accesses or synchronization. Due to the bursty nature of many
parallel workloads this is essential to make good use of the avail-
able hardware resources. Callisto limits the frequency with which
context switching to low priority threads can occur using a config-
urable hysteresis threshold, typically around 10ms. If a high prior-
ity thread blocks for longer than a fixed number of processor cycles,
it is stopped and a low priority thread allowed to run. The high pri-
ority thread is only allowed to run again after it has been runnable
for sufficiently many processor cycles.

5.2 Multi-Socket Scheduling
Callisto’s thread scheduler treats the system as a homogeneous
array of cores. It arbitrarily assigns programs to cores, and allows a
program to have threads running on different sockets. This means
it does not necessarily allocate programs to sockets in a manner
that reduces interference. Callisto’s spatial scheduler can lead to
the situation where a low priority thread is run on a different socket
from the high priority threads. This is likely to incur additional
intra-socket communication as data is copied to the caches on the
other socket. Synchronization may also have to be performed
across the socket boundary in this case, which may cause the high
priority threads to block whilst waiting for the low priority thread
to complete. For example, Callisto could produce the schedule

Main

Thread

Worker

Thread n

1

Counter

Table

2

3

Scheduler

Thread

1s

4

4

6

6

Worker

Thread n+1

Key

Work item

execution

Book-keeping

work

Read/write

shared state

Thread

idle

7

5

Current

schedule

T
im

e 1

1

1

1

1

1

6

6

Figure 5: LIRA-adaptive, the online adaptive scheduler.

shown in Figure 4 which is pathologically bad. Each thread needs
to communicate across the socket boundaries, which introduces
communication overheads that would be unnecessary if the threads
were scheduled to the same sockets.

Our scheduler uses the LIRA heuristic to extend Callisto by
considering the fact that the cores exist in separate sockets. Our
approach aims to automatically allocate programs to sockets such
that interference and contention for resources is reduced. When
there are more programs than sockets, we also keep all of the
threads for each program on the same socket, to avoid the situation
where a low priority thread is run on a separate socket. However,
within each socket, we use Callisto to schedule the threads. This
improves utilization within each socket, by allowing low priority
threads to run if the high priority threads block.

We develop two scheduling techniques: LIRA-static (Section 5.3)
uses profile data collected a priori to decide which programs to
allocate to which sockets, and LIRA-adaptive (Section 5.4) observes
the programs at runtime to adaptively allocate programs to sockets.

Our profile-based and online adaptive approaches rely on being
able to anticipate when running programs on the same socket will
lead to bad performance, compared to running them on separate
sockets, and avoid these cases. In order to do this, we devise
a model that maps the properties of the pairs of programs to a
performance estimate. We use hardware performance counters to
provide these properties.

5.3 LIRA-static: Profile-Driven Scheduler
Our profile-driven scheduler uses information about program be-
havior collected a priori to schedule programs to sockets.

To run a program on the system, it must first be profiled. The
application programmer provides a sample input and the program
binary to the system. The program is then run exclusively on a
single socket of the machine, and hardware performance counters
are used to measure its behavior. The values of these are converted
to rates (normalized by the total execution time of the program) and
stored in a database for use in scheduling decisions.

When a program is run on the system, the scheduler examines the
database for the behavior data for every program that is running.
This data is used to predict the best allocation of programs to
sockets. We then use the original Callisto strategy to schedule
each program’s threads within each socket. This means that, within
each socket, each program spawns and pins one thread to every
core, and each program has an equal share of high priority threads.
This prediction is made using the LIRA heuristic described in
Section 4.2. Figure 4 shows an example of this spatial scheduling.

This scheduling decision is only made when a program is in-
voked. The schedule does not adapt during program execution. In
our experiments we focused solely on the case where sets of pro-
grams are run simultaneously.

This static profile-driven approach requires a potentially expen-
sive training phase, however it incurs no runtime overhead. This
approach is used as an additional baseline to compare against our
more sophisticated online adaptive scheduler, described in the fol-
lowing section.

5.4 LIRA-adaptive: Online Scheduler
Our online adaptive scheduler uses the same LIRA heuristic as the
profile driven scheduler, described in Section 5.3. This heuristic
is used to choose the best program to socket allocation during
program execution. This removes the need for a separate profiling
step, makes the approach input agnostic, and allows the schedule to
adapt to changes in program behavior during program execution.

The online adaptive scheduler consists of the following two
components. Figure 5 shows a timing diagram of the operations
performed by these components.

• Performance Monitoring

Each thread periodically measures its hardware performance
counters (shown by Ê in Figure 5), and updates a process-
shared table with this information (Ë). The time interval
between updates to this table is configurable. We include
a sensitivity study of this parameter in Section 6.4.

Each thread measures the number of executed instructions
and the number of executed load instructions since the last
update. These values are used to compute the rate at which
load instructions are executed since the previous update, for
the program as a whole by averaging across all threads. Each
thread also measures the number of CPU cycles spent in
a runnable state since the last update. A thread is in the
runnable state if it is a high priority thread and is not blocked
for I/O or synchronization. This is used to determine whether
a thread is idle as described in Section 5.4.1.

The process-shared table stores these hardware performance
counter measurements for each thread running in each pro-
cess on the system. The cache miss rates and number of
cycles are smoothed using an exponential moving average.
This smoothing avoids short lived changes from affecting the
scheduling decision, which would incur large overheads due
to frequently moving threads to different cores.

• Scheduling

Each program spawns an additional thread to perform schedul-
ing decisions (Ì). These threads are pinned to the same cores
as each program’s main thread. They periodically check the
information stored in the shared-process table (containing
performance information collected by the performance mon-
itor) to decide if the thread schedule should change (Í). The
time interval between these updates is configurable. We in-
clude a sensitivity study of this parameter in Section 6.4.

The scheduler computes the arithmetic mean of the cache
miss rates for each thread in each program. The LIRA heuris-
tic (described in Section 4.2) is used to assign a score to ev-
ery possible placement of programs on sockets. The schedule
with the highest score is chosen as the new schedule.

This decision is written to a process-shared piece of memory
(Î), so that the main threads in other programs can detect the
change and apply the new schedule (Ï).

0s 50s 100s 150s 200s 250s 300s

0
%

4
0
%

8
0
%

C
P

U
 l
o
a
d

0
1
0
0

2
0
0

L
o
a
d
 I
n
s
tr

u
c
ti
o
n
 R

a
te

 /
 H

z

Figure 6: The CPU load (red, dashed line) and load instruction
rate (blue, solid line) over time for pagerank. This demonstrates
the loading and completion phases with low CPU load, and
phase changes in load instruction rate.

Work is allocated to threads based on the schedule, and
threads that are not allocated work simply remain idle Ð.

5.4.1 Dealing with Bursty CPU Load
Programs often involve an input or output phase with significant
amounts of I/O to disk. For example, the graph analytics bench-
marks load a large graph from disk before performing computation
over it. During these phases, CPU usage is minimal – the worker
threads are essentially idle. Therefore the threads do not run very
often and there is no meaningful load instruction rate to measure.
Figure 6 shows an example of this behavior.

LIRA-adaptive handles this by first classifying the programs run-
ning on the system as idle or active. This is done by measuring
the number of cycles that each high priority threads spends in a
runnable state (i.e. when not blocking for I/O or synchronization).
This is converted to a percentage CPU load and averaged across all
program threads. If this average CPU load is below 50% the pro-
gram is considered idle. Note that the choice of this threshold is not
important as the common case is that the program’s average CPU
load is either near 100% or near 0%.

The schedule is determined based on three cases: (i) no idle
programs – the load instruction rate LIRA heuristic is used to
schedule programs to sockets; (ii) at least 1 idle program – the
load instruction rate of the idle program is assigned a value of 0;
and (iii) more idle programs than sockets – the schedule is left
unchanged.

6. EVALUATION
In this section we analyse the performance of our profile-driven
and online adaptive schedulers compared to the libgomp OpenMP
implementation and Callisto. Section 6.1 details the setup for
our experiments, Section 6.2 compares our scheduling techniques
against OpenMP and Callisto, and Section 6.3 compares against an
optimal static policy.

6.1 Experimental Setup
We use two performance metrics to compare and contrast the
scheduling approaches – ANTT and STP. These metrics are de-
scribed in detail in Section 3.

For our experiments we use a dual-socket machine, with a pair
of Xeon E5-2660 processors clocked at 2.20GHz. Each processor
has 8 physical cores with 2 hardware threads per core. We disable
hyperthreading to focus on the effects of multiple sockets, and will
investigate the effect of hyperthreading in future work. Each socket
has 128GB of main memory, for a total of 256GB, and runs Linux
2.6.32. We use GCC 4.8.0 to compile the benchmark programs.

We use 18 benchmark programs taken from four different
sources. Firstly, we use the 11 benchmarks from SPEC OMP 2001

and 2012 that are supported by Callisto. These are the benchmarks
that do not use manual locking via calls to omp_set_lock and
omp_unset_lock. These calls are used by (i) nested parallel
sections, (ii) the ordered directive and (iii) explicit tasks.

We also include an implementation of the betweenness-centrality
graph algorithm [3] written using CDDP, a constrained data-driven
parallelism programming model [8]. Four graph analytics pro-
grams are also included. They are written in the domain specific
Green-Marl language [10], which is compiled to OpenMP using
the Green-Marl compiler.

Finally, we include a pair of micro-benchmarks: spin and
cachehog. spin simply executes CPU-bound computation, with
a very small working set, so as to put minimal stress on the memory
system. cachehog executes memory-bound computation, with
the aim of maximising the number of misses in the last-level cache.
Running these synthetic workloads alongside other programs helps
us understand the reasons for the behavior that we see.

We use input sizes that require approximately one minute of
execution time when run alone on the machine. For the SPEC OMP
2006 benchmarks, we used the “large” inputs, and slightly reduced
size inputs for the SPEC OMP 2012 benchmarks. For the graph
analytics benchmarks we use a large Twitter graph with 42 million
nodes and 1,500 million edges.

Given our set of 18 benchmark programs, we choose 32 random
combinations of 4 programs from the set. We run each of the
32 sets of programs using each of the runtime environments: the
libgomp OpenMP implementation from GCC, the Callisto runtime
library, our static profile-driven scheduler (LIRA-static) and our
online adaptive scheduler (LIRA-adaptive). We also measure the
performance of every permutation of statically allocating programs
to sockets, to provide best and worst case bounds for LIRA-static
(worst-static and best-static). To compute the ANTT and STP for
each instance, we record the execution time for each program run
in isolation on the machine. We therefore run each benchmark
program in isolation, utilizing all 16 cores on the machine and the
libgomp OpenMP implementation.

Note that using this experimental setup we are comparing our
online adaptive scheduler, with its performance tracking instrumen-
tation, against libgomp and Callisto without runtime instrumen-
tation. Our results therefore include any runtime instrumentation
overhead. These overheads are amortized by the increased perfor-
mance and are quantitatively analysed in Section 6.4.

To quantify the error in our measurements, we run each program
for at least 9 repeats. The execution time of each benchmark
program differs, therefore we repeatedly execute each of the four
programs. This maintains the system workload for each program.
We measure the time for the entire execution of each program,
including loading data from disk.

6.2 Comparison with libgomp and Callisto
Figure 7 shows the percentage improvement in ANTT and STP
achieved by each approach, compared to Callisto. This is com-
puted as the percentage change in ANTT/STP for each program
combination compared to the ANTT/STP achieved by Callisto.

Our results demonstrate that LIRA-adaptive performs the best.
In all cases it achieves performance at least as good as Callisto,
and usually better. On average, LIRA-static performs similarly to
Callisto. This is likely due to both Callisto and the static ap-
proach choosing a single schedule for the entire program run. The
schedule does not adapt to changes in program behavior during
execution. This demonstrates that the adaptive approach used by
LIRA-adaptive is required. Moreover, any overhead incurred by

%
 i
m

p
ro

ve
m

e
n
t
in

 A
N

T
T

Callisto

worst−static

LIRA−static

best−static

LIRA−adaptive

+
6
%

+
2
%

−
2
%

−
6
%

%
 i
m

p
ro

ve
m

e
n
t
in

 S
T

P

Callisto

worst−static

LIRA−static

best−static

LIRA−adaptive

−
2
%

0
%

+
2
%

+
4
%

Figure 7: Box plots showing the percentage improvement in Av-
erage Normalized Turnaround Time (ANTT) (left) and System
Throughput (STP) (right) achieved by each runtime system,
across all 32 combinations of 4 concurrently running programs.
For ANTT, lower is better, and for STP, higher is better. Thick
horizontal lines show the median, shaded boxes show the in-
terquartile range, and whiskers show the maximum/minimum.

LIRA-adaptive’s more complex implementation is amortized by the
performance gains it provides.
Figure 8 shows the ANTT and STP for each program set achieved
by both our static profile-driven scheduler (LIRA-static) and on-
line adaptive scheduler (LIRA-adaptive), compared to the libgomp
OpenMP implementation, the Callisto runtime system, the best
possible performance (best-static), and the worst possible perfor-
mance (worst-static), when choosing a schedule statically.

In most cases, libgomp performs the worst. This is not surpris-
ing, as the benchmarks have likely been tuned assuming that the
program will be using the machine exclusively. This demonstrates
the need for socket aware scheduling given concurrently running
programs. In most cases, Callisto performs better than libgomp,
achieving an ANTT close to 1 and an STP close to 4 in each
case. LIRA-static performs, on average, slightly better than Callisto.
LIRA-adaptive performs similarly to the profile-driven approach for
ANTT, improving performance in roughly half the cases, but de-
grading it in others. However, it significantly improves STP in
many cases, achieving an STP greater than 4 in some cases. In
some cases, LIRA-adaptive achieves an ANTT lower than 1. This
shows that by pairing together programs that interact well perfor-
mance can actually be improved compared to running in isolation.
This is due to stalls in execution being avoided by context switch-
ing to the other concurrently running program, but in such a way
that the switch does not harm the performance of either program.

Three interesting cases are 10, 16 and 26. In these cases libgomp
achieves the best ANTT. Callisto harms performance slightly, and
LIRA-static harms performance further. This is due to the increasing
amount of runtime overhead introduced by each approach, and the
fact that the programs in these cases do not interfere with one
another (as shown in Figure 2). There is therefore no performance
to be gained by carefully choosing the program-to-socket mapping,
and therefore no performance gain that can be used to hide these
overheads. In these three cases LIRA-adaptive also performs worse
than libgomp, but at least as well as Callisto.

6.3 Comparison with Optimal Static Policy
Figure 8 also compares against two static oracles (best-static and
worst-static), which exhaustively try all static thread-to-socket allo-
cations to find the best/worst choice. The results show that, in most
cases, the profile-driven approach achieves the best performance it
can (the static oracle provides an upper bound on the performance
that a static scheme can achieve). This supports the hypothesis that

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A
N

T
T

 (
lo

w
e

r
is

 b
e

tt
e

r)

AVG

0
.0

0
.5

1
.0

1
.5

libgomp Callisto worst−static LIRA−static best−static LIRA−adaptive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Program combinations

S
T

P
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

AVG

0
1

2
3

4
5

Figure 8: Comparison of the Average Normalized Turnaround Time (ANTT) and System Throughput (STP) achieved by different
approaches, for 32 random combinations of 4 concurrently running programs. For ANTT, lower is better, and for STP, higher is
better. AVG shows the arithmetic mean of the ANTT and STP for each approach.

the LIRA heuristic is a good way of choosing non-interfering pairs.
The results also show that in some cases there is large scope for
improving performance using a dynamic approach. In some cases
this comes at a cost in ANTT, but improves STP.

6.4 Sensitivity Analysis
Figure 9 shows the effects of varying the two implementation
parameters present in LIRA-adaptive: (i) the time delay between
scheduler invocations, controlling the frequency at which the sys-
tem can adapt to changes, and (ii) the time delay between sam-
ples of the hardware performance counter, controlling the accuracy
of the load instruction rate and CPU load information used in the
LIRA heuristic. This experiment was performed identically to pre-
vious experiments. We run 32 combinations of 4 concurrently run-
ning programs, on a dual-socket 16-core shared-memory machine.

Time Delay Between Scheduler Invocations.
For this parameter, we investigate time delays of 0.1 seconds (used
by LIRA-adaptive), 1 second and 5 seconds. We compare against
LIRA-static, where the scheduler is invoked exactly once, at the start
of the programs’ execution, but with a priori knowledge of the per-
formance counters averaged over the program’s entire execution.
The time delay between counter samples was set to 2× 109 cycles.

The top two plots in Figure 9 show the effect on ANTT and STP.
As the time delay is increased, performance decreases (shown by
an increase in ANTT and a decrease in STP). The median ANTT
and STP is similar for each plot, however the spread of ANTT and
STP across combinations increases. This increased spread shows
that some programs performance is adversly affected by increasing
this parameter value, whilst others maintain the same performance.

In the case of only running the scheduler at the start of the pro-
grams’ execution, the performance across all benchmarks decreases
significantly. This is shown by the increase in ANTT and decrease
in STP. This demonstrates that best performance is achieved when
the scheduler is invoked frequently, so that the runtime system can
adapt the scheduler to the changing program behavior.

A
N

T
T

0
.9

5
1

.0
0

1
.0

5
1

.1
0

1
.1

5
1

.2
0

A
N

T
T

0
.9

5
1

.0
0

1
.0

5
1

.1
0

1
.1

5
1

.2
0

Scheduler Delay

S
T

P

0.1 s 1 s 5 s
LIRA−static

3
.5

3
.7

3
.9

4
.1

Sampling Delay

S
T

P

0.5e9 cycles

1e9 cycles
2e9 cycles

LIRA−static

3
.5

3
.7

3
.9

4
.1

Figure 9: Box plots showing (i) the effect of varying the time
delay between scheduler invocations on Average Normalized
Turnaround Time (ANTT) (top left) and (ii) System Through-
put (STP) (bottom left), and (iii) the effect of varying the time
delay between samples of the hardware counters on ANTT
(top right) and (iv) STP (bottom right). For ANTT, lower is
better, and for STP, higher is better. The thick horizontal
line shows the median, the box shows the interquartile range,
and the whiskers show the maximum and minimum values.
LIRA-adaptive uses a time delay of 0.1 seconds between sched-
uler invocations, and a time delay of 0.5× 109 between hard-
ware counter samples.

Time Delay Between Hardware Counter Samples.
For this parameter, we investigate time delays of 0.5 × 109 cycles
(the value used by LIRA-adaptive), 1 × 109 cycles and 2 × 109

cycles. We also compare against LIRA-static. The time delay
between scheduler invocations is 5 seconds for this experiment.

The bottom two plots in Figure 9 show the effect on ANTT
and STP. Performance is similar for time delays of 0.5 × 109 and
1× 109 cycles. Performance decreases for a time delay of 2× 109

cycles, shown by an increase in the median ANTT, and decrease in
the median STP. Performance is worst for LIRA-static, where the
scheduler is unable to respond to changes in program behavior.
This shows that frequent measurements of the hardware counters
are required to provide the scheduler with timely information, so
that it can adapt the schedule effectively.

7. RELATED WORK
Callisto [9] runs multiple parallel applications on a shared machine.
The experiments only consider pairs of workloads sharing a dual-
socket machine, and assume that workloads are ambivalent to ex-
actly which resources they receive. Zhuravlev et al. provide an
extensive survey [17]. We highlight the work most relevant to our
own here, and additional recent papers.

Snavely et al. [15] explore co-scheduling of threads in SMT sys-
tems. Their system dynamically explores different combinations
of thread placement. However, unlike LIRA-adaptive, a profiling
phase is required. McGregor et al. [13] select pairs of threads to
co-schedule on a hyperthreaded processor. They examine bus trans-
actions, stall cycles and LLC miss rate, and select sets of threads to
run per-quantum, attempting to balance the chosen metric between
quanta. Their results suggest that using stall cycles are effective, re-
flecting the fact that contention between the pairs of hyperthreads
was most significant. Knauerhase et al. [11] coschedule “light” and
“heavy” tasks where pairs of cores share an LLC. Their experi-
ments suggested that cache misses per cycle was the best indica-
tor of interference. As with Fedorova et al. [7], they increase the
amount of CPU time given to “light”, reflecting the fact that “light”
tasks were more likely to suffer from interference.

Zhuravlev et al. investigate scheduling techniques for interfer-
ence between threads sharing an LLC [16]. They observe that
contention in memory controllers, memory buses, and prefetch-
ing hardware could be significant. They sort threads by miss rate,
and distribute them such that the total miss rate is balanced across
LLCs. They described an online algorithm which dynamically
measures miss rates.

Bhadauria and McKee [2] investigated co-scheduling applica-
tions, using performance counters to identify when programs fail
to scale, then applying search heuristics to choose which programs
to run together. Their system exploits the fact that some applica-
tions experience better scaling while receiving an apparently unfair
resource allocation. Programs to co-schedule are selected based on
profiling information from initial sampling runs.

ReSense [5] is a system for dynamically controlling the num-
ber of threads in concurrent applications. Programs sensitivity to
sharing memory is characterised from single-program profiling de-
signed to stress each resource. Thread-to-core mappings are de-
cided when applications/threads start/stop.

Libutti et al. [12] explored a user-mode resource management
mechanism to select workloads to co-schedule. The hardware is
divided into “binding domains” (BDs), with BDs either allocated
to individual processes, or shared between them, using an offline
training phase is needed.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we establish the need for a socket-aware scheduler
for data analytics and cluster workloads, run on shared multi-socket
multi-core machines. Over a suite of programs, our adaptive sched-
uler achieves a 31% improvement in ANTT and a 13% improve-
ment in STP on average, compared to the libgomp OpenMP run-
time system. Compared to Callisto, it improves system throughput
by up to 7%, and 3% on average across all 32 combinations.

In the future, we plan to evaluate our scheduler on a wider range
of workloads, and for more concurrently running programs. We
also plan to evaluate it on a wider variety of hardware and explore
hyper-threading. Finally we plan to explore the use of finer grained
scheduling, to co-schedule individual threads.

References
[1] Top500. http://www.top500.org. Accessed: 2015-03-20.
[2] M. Bhadauria and S. A. McKee. An approach to resource-aware co-

scheduling for CMPs. In Proc. of the 24th Intl. Conf. on Supercom-
puting. ACM, 2010.

[3] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25, 2001.

[4] G. S. Choi, J. Kim, D. Ersoz, A. B. Yoo, and C. R. Das. Coscheduling
in clusters: Is it a viable alternative? In Intl. Conf. on Supercomputing,
Nov 2004.

[5] T. Dey, W. Wang, J. W. Davidson, and M. L. Soffa. ReSense:
Mapping dynamic workloads of colocated multithreaded applications
using resource sensitivity. ACM Transactions on Architecture and
Code Optimization, 10(4), Dec 2013.

[6] S. Eyerman and L. Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE Micro, 28(3), 2008.

[7] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance
isolation on chip multiprocessors via an operating system scheduler.
In Proc. of the 16th Intl. Conf. on Parallel Architecture and Compila-
tion Techniques. IEEE, 2007.

[8] T. Harris, Y. Lev, V. Luchangco, V. Marathe, and M. Moir. Con-
strained data-driven parallelism. In Proc. of the 5th Workshop on Hot
Topics in Parallelism, Jun 2013.

[9] T. Harris, M. Maas, and V. J. Marathe. Callisto: Co-scheduling
parallel runtime systems. In Proc. of the 9th ACM European Conf.
on Computer Systems, 2014.

[10] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A DSL
for easy and efficient graph analysis. In Proc. of the 17th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2012.

[11] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS
observations to improve performance in multicore systems. IEEE
Micro, 28(3), May 2008.

[12] S. Libutti, G. Massari, P. Bellasi, and W. Fornaciari. Exploiting
performance counters for energy efficient co-scheduling of mixed
workloads on multi-core platforms. In Proc. of the PARMA-DITAM
Workshop. ACM, 2014.

[13] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos.
Scheduling algorithms for effective thread pairing on hybrid multi-
processors. In Proc. of the 19th IEEE Intl. Parallel and Distributed
Processing Symp. IEEE Computer Society, 2005.

[14] P. J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable
interface to hardware performance counters. In Proc. of the DoD
HPCMP Users Group Conf., 1999.

[15] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simulta-
neous multithreaded processor. In 9th Conf. on Architectural Support
for Programming Languages and Operating Systems. ACM, 2000.

[16] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contention in multicore processors via scheduling. In 15th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems. ACM, 2010.

[17] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto.
Survey of scheduling techniques for addressing shared resources in
multicore processors. ACM Computing Surveys, 45(1), 2012.

